A097665 Decimal expansion of the constant 4*exp(psi(1/4) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.
1, 0, 3, 9, 3, 9, 7, 8, 8, 1, 7, 5, 3, 8, 0, 9, 5, 4, 2, 7, 3, 4, 7, 7, 8, 0, 9, 9, 1, 7, 4, 8, 9, 3, 8, 5, 0, 1, 6, 9, 3, 8, 9, 2, 0, 8, 1, 5, 8, 8, 4, 8, 0, 4, 0, 3, 7, 5, 6, 7, 9, 4, 1, 5, 2, 7, 7, 0, 9, 9, 3, 8, 6, 4, 2, 7, 4, 1, 0, 6, 9, 8, 9, 4, 3, 0, 0, 1, 3, 8, 9, 3, 2, 7, 1, 3, 0, 1, 7, 6, 7, 0, 2, 6, 0
Offset: 0
Examples
c = 0.10393978817538095427347780991748938501693892081588480403756...
References
- A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Benoit Cloitre, On a generalization of Euler-Gauss formula for the Gamma function, preprint 2004.
- Andrew Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.
- Xavier Gourdon and Pascal Sebah, Introduction to the Gamma Function.
Programs
-
Mathematica
RealDigits[1/2*E^(-Pi/2), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
-
PARI
4*exp(psi(1/4)+Euler)
Formula
c = 1/2*exp(-Pi/2).
Extensions
More terms from Robert G. Wilson v, Aug 28 2004
Comments