A097717 a(n) = least number m such that the quotient m/n is obtained merely by shifting the leftmost digit of m to the right end.
1, 105263157894736842, 1034482758620689655172413793, 102564, 714285, 1016949152542372881355932203389830508474576271186440677966, 1014492753623188405797, 1012658227848, 10112359550561797752808988764044943820224719
Offset: 1
Examples
We have a(5)=714285 since 714285/5=142857. Likewise, a(4)=102564 since this is the smallest number followed by 205128, 307692, 410256, 512820, 615384, 717948, 820512, 923076, ... which all get divided by 4 when the first digit is made last.
References
- R. Sprague, Recreation in Mathematics, Problem 21 pp. 17; 47-8 Dover NY 1963.
Links
- A. V. Chupin, Table of n, a(n) for n=1..101
- A. V. Chupin, Table of n, a(n) for n=1..154
Crossrefs
Programs
-
Mathematica
Min[Table[Block[{d=Ceiling[Log[10,n]],m=(10n-1)/GCD[10n-1,a]}, If[m!=1, While[PowerMod[10,d,m]!=n,d++ ],d=1]; ((10^(d+1)-1) a n)/(10n-1)], {a,9}]] (* Anton V. Chupin (chupin(X)icmm.ru), Apr 12 2007 *)
Extensions
a(9) from Anton V. Chupin (chupin(X)icmm.ru), Apr 12 2007
Code and b-file corrected by Ray Chandler, Apr 29 2009