cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097740 Chebyshev U(n,x) polynomial evaluated at x=201.

Original entry on oeis.org

1, 402, 161603, 64964004, 26115368005, 10498312974006, 4220295700182407, 1696548373160353608, 682008225714761968009, 274165610188961150786010, 110213893287736667854008011, 44305710936059951516160434412
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

Used to form integer solutions of Pell equation a^2 - 101*b^2 =-1. See A097741 with A097742.

Programs

  • Mathematica
    LinearRecurrence[{402, -1},{1, 402},12] (* Ray Chandler, Aug 11 2015 *)

Formula

a(n) = 2*201*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.
a(n) = S(n, 2*201)= U(n, 201), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-402*x+x^2).
a(n)= sum((-1)^k*binomial(n-k, k)*402^(n-2*k), k=0..floor(n/2)), n>=0.
a(n) = ((201+20*sqrt(101))^(n+1) - (201-20*sqrt(101))^(n+1))/(40*sqrt(101)), n>=0.