A097740 Chebyshev U(n,x) polynomial evaluated at x=201.
1, 402, 161603, 64964004, 26115368005, 10498312974006, 4220295700182407, 1696548373160353608, 682008225714761968009, 274165610188961150786010, 110213893287736667854008011, 44305710936059951516160434412
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..383
- R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (402, -1).
Programs
-
Mathematica
LinearRecurrence[{402, -1},{1, 402},12] (* Ray Chandler, Aug 11 2015 *)
Formula
a(n) = 2*201*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.
a(n) = S(n, 2*201)= U(n, 201), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-402*x+x^2).
a(n)= sum((-1)^k*binomial(n-k, k)*402^(n-2*k), k=0..floor(n/2)), n>=0.
a(n) = ((201+20*sqrt(101))^(n+1) - (201-20*sqrt(101))^(n+1))/(40*sqrt(101)), n>=0.
Comments