A097764 Numbers of the form (kp)^p for prime p and k=1,2,3,....
4, 16, 27, 36, 64, 100, 144, 196, 216, 256, 324, 400, 484, 576, 676, 729, 784, 900, 1024, 1156, 1296, 1444, 1600, 1728, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3125, 3136, 3364, 3375, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 5832, 6084, 6400
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- A. Schinzel, Problems and results on polynomials.
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a097764 n = a097764_list !! (n-1) a097764_list = f 0 (singleton (4, 2, 2)) $ tail $ zip a051674_list a000040_list where f m s ppps'@((pp, p) : ppps) | pp < qq = f m (insert (pp, p, 2) s) ppps | qq == m = f m (insert ((k * q) ^ q, q, k + 1) s') ppps' | otherwise = qq : f qq (insert ((k * q) ^ q, q, k + 1) s') ppps' where ((qq, q, k), s') = deleteFindMin s -- Reinhard Zumkeller, Feb 14 2015
-
Mathematica
nMax=10000; lst={}; n=1; While[p=Prime[n]; p^p<=nMax, k=1; While[(k*p)^p<=nMax, AppendTo[lst, (k*p)^p]; k++ ]; n++ ]; Union[lst]
-
PARI
is(n)=my(b,e=ispower(n,,&b),f); if(e==0, return(0)); f=factor(e)[,1]; for(i=1,#f, if(b%f[i]==0, return(1))); 0 \\ Charles R Greathouse IV, Aug 29 2016
Comments