cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097764 Numbers of the form (kp)^p for prime p and k=1,2,3,....

Original entry on oeis.org

4, 16, 27, 36, 64, 100, 144, 196, 216, 256, 324, 400, 484, 576, 676, 729, 784, 900, 1024, 1156, 1296, 1444, 1600, 1728, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3125, 3136, 3364, 3375, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 5832, 6084, 6400
Offset: 1

Views

Author

T. D. Noe, Aug 24 2004

Keywords

Comments

The polynomial x^n - n is reducible over the integers for n in this sequence.
A result of Vahlen shows that the polynomial x^n - n is reducible over the integers for n in this sequence and no other n.
The representation (k*p)^p is generally not unique, e.g. a(120) = 46656 = (108*2)^2 = (12*3)^3. - Reinhard Zumkeller, Feb 14 2015
This is also numbers of the form (km)^m for any m > 1, not just primes. Let m be > 1; then m has a prime factor, so let m=pj, p a prime and j an integer > 0. Then (km)^m = (kpj)^pj = (k^j p^j j^j)^p = ((k^j p^(j-1) j^j) p) ^ p. - Franklin T. Adams-Watters, Sep 13 2015

Crossrefs

Cf. A084746 (least k such that n^k-k is prime).
Cf. A097792 (numbers of the form 4k^4 or (kp)^p).
Cf. A000040, A051674, A255134 (first differences).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a097764 n = a097764_list !! (n-1)
    a097764_list = f 0 (singleton (4, 2, 2)) $
                     tail $ zip a051674_list a000040_list where
       f m s ppps'@((pp, p) : ppps)
         | pp < qq   = f m (insert (pp, p, 2) s) ppps
         | qq == m   = f m (insert ((k * q) ^ q, q, k + 1) s') ppps'
         | otherwise = qq : f qq (insert ((k * q) ^ q, q, k + 1) s') ppps'
         where ((qq, q, k), s') = deleteFindMin s
    -- Reinhard Zumkeller, Feb 14 2015
    
  • Mathematica
    nMax=10000; lst={}; n=1; While[p=Prime[n]; p^p<=nMax, k=1; While[(k*p)^p<=nMax, AppendTo[lst, (k*p)^p]; k++ ]; n++ ]; Union[lst]
  • PARI
    is(n)=my(b,e=ispower(n,,&b),f); if(e==0, return(0)); f=factor(e)[,1]; for(i=1,#f, if(b%f[i]==0, return(1))); 0 \\ Charles R Greathouse IV, Aug 29 2016