cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097779 Number of Motzkin paths of length n, starting with an up step, ending with a down step and having no peaks (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 5, 11, 25, 58, 135, 317, 750, 1785, 4272, 10275, 24823, 60210, 146576, 358010, 877087, 2154751, 5307166, 13102511, 32418806, 80375267, 199650310, 496803811, 1238276667, 3091173482, 7727893389, 19346109435, 48493869237
Offset: 0

Views

Author

Emeric Deutsch, Sep 11 2004

Keywords

Examples

			a(6)=5 because we have UHHHHD, UHDUHD, UUHHDD, UHUHDD and UUHDHD, where U=(1,1), D=(1,-1) and H=(1,0).
		

Crossrefs

Cf. A004148.

Programs

  • Maple
    G:=z+1/2*(1-z)^2/z^2*(1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4)): Gser:=series(G,z=0,40): 1,seq(coeff(Gser,z^n),n=1..37);
  • Mathematica
    CoefficientList[Series[x+(1-x)^2 (1-x+x^2-Sqrt[1-2x-x^2-2x^3+x^4])/(2x^2),{x,0,40}],x] (* Harvey P. Dale, Dec 24 2016 *)

Formula

G.f. = z + (1-z)^2*[1-z+z^2-sqrt(1-2z-z^2-2z^3+z^4)]/(2z^2)
D-finite with recurrence (n+2)*a(n) -3*n*a(n-1) +(n-4)*a(n-2) +(-n+1)*a(n-3) +3*(n-5)*a(n-4) +(-n+7)*a(n-5)=0. - R. J. Mathar, Jul 26 2022