cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097806 Riordan array (1+x, 1) read by rows.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Paul Barry, Aug 25 2004

Keywords

Comments

Pair sum operator. Columns have g.f. (1+x)*x^k. Row sums are A040000. Diagonal sums are (1,1,1,....). Riordan inverse is (1/(1+x), 1). A097806 = B*A059260^(-1), where B is the binomial matrix.
Triangle T(n,k), 0<=k<=n, read by rows given by [1, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 01 2007
Table T(n,k) read by antidiagonals. T(n,1) = 1, T(n,2) = 1, T(n,k) = 0, k > 2. - Boris Putievskiy, Jan 17 2013

Examples

			Rows begin {1}, {1,1}, {0,1,1}, {0,0,1,1}...
From _Boris Putievskiy_, Jan 17 2013: (Start)
The start of the sequence as table:
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
1..1..0..0..0..0..0...
. . .
The start of the sequence as triangle array read by rows:
  1;
  1, 1;
  0, 1, 1;
  0, 0, 1, 1;
  0, 0, 0, 1, 1;
  0, 0, 0, 0, 1, 1;
  0, 0, 0, 0, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 1, 1; . . .
Row number r (r>4) contains (r-2) times '0' and 2 times '1'. (End)
		

Programs

  • Magma
    [k eq n or k eq n-1 select 1 else 0: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 11 2019
    
  • Maple
    A097806 := proc(n,k)
        if k =n or k=n-1 then
            1;
        else
            0;
        end if;
    end proc: # R. J. Mathar, Jun 20 2015
  • Mathematica
    Table[Boole[n <= # <= n+1] & /@ Range[n+1], {n, 0, 15}] // Flatten (* or *)
    Table[Floor[(# +2)/(n+2)] & /@ Range[n+1], {n, 0, 15}] // Flatten (* Michael De Vlieger, Jul 21 2016 *)
  • PARI
    T(n, k) = if(k==n || k==n-1, 1, 0); \\ G. C. Greubel, Jul 11 2019
    
  • Sage
    def T(n, k):
        if (k==n or k==n-1): return 1
        else: return 0
    [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jul 11 2019

Formula

T(n, k) = if(n=k or n-k=1, 1, 0).
a(n) = A103451(n+1). - Philippe Deléham, Oct 16 2007
From Boris Putievskiy, Jan 17 2013: (Start)
a(n) = floor((A002260(n)+2)/(A003056(n)+2)), n > 0.
a(n) = floor((i+2)/(t+2)), n > 0,
where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)
G.f.: (1+x)/(1-x*y). - R. J. Mathar, Aug 11 2015