cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097813 a(n) = 3*2^n - 2*n - 2.

Original entry on oeis.org

1, 2, 6, 16, 38, 84, 178, 368, 750, 1516, 3050, 6120, 12262, 24548, 49122, 98272, 196574, 393180, 786394, 1572824, 3145686, 6291412, 12582866, 25165776, 50331598, 100663244, 201326538, 402653128, 805306310, 1610612676, 3221225410, 6442450880, 12884901822, 25769803708
Offset: 0

Views

Author

Paul Barry, Aug 25 2004

Keywords

Comments

An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 58, 154, 178 and 184, lead to this sequence. For the central square these vectors lead to the companion sequence A033484. - Johannes W. Meijer, Aug 15 2010
a(n) is also the number of order-preserving partial isometries of an n-chain, i.e., the row sums of A183153 and A183154. - Abdullahi Umar, Dec 28 2010

Crossrefs

Programs

  • Magma
    [3*2^n -2*(n+1): n in [0..40]]; // G. C. Greubel, Dec 30 2021
    
  • Mathematica
    Table[3 2^n-2n-2,{n,0,40}] (* or *) LinearRecurrence[{4,-5,2},{1,2,6},40] (* Harvey P. Dale, Oct 25 2011 *)
  • PARI
    a(n)=3*2^n-2*n-2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [3*2^n -2*(n+1) for n in (0..40)] # G. C. Greubel, Dec 30 2021

Formula

G.f.: (1 - 2*x + 3*x^2)/((1-x)^2*(1-2*x)).
a(n) = 2*a(n-1) + 2*n - 2, for n>0, with a(0)=1.
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
From G. C. Greubel, Dec 30 2021: (Start)
a(n) = 2^n + 2*A000295(n).
E.g.f.: 3*exp(2*x) - 2*(1 + x)*exp(x). (End)