A097820 Expansion of e.g.f. exp(2*x)/(1-4*x).
1, 6, 52, 632, 10128, 202592, 4862272, 136143744, 4356600064, 156837602816, 6273504113664, 276034181003264, 13249640688160768, 688981315784368128, 38582953683924631552, 2314977221035477925888, 148158542146270587322368
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..365
Programs
-
Maple
f:= rectoproc({a(n) +2*(-2*n-1)*a(n-1) +8*(n-1)*a(n-2) = 0,a(0)=1,a(1)=6},a(n),remember): map(f, [$0..50]); # Robert Israel, Dec 19 2017
-
Mathematica
Table[Sum[Binomial[n,k]4^k k! 2^(n-k),{k,0,n}],{n,0,12}] (* Emanuele Munarini, Dec 18 2017 *) Fold[Append[#1, 4 #2*#1[[#2]] + 2^#2] &, {1}, Range@ 16] (* Michael De Vlieger, Dec 18 2017 *) With[{nn=20},CoefficientList[Series[Exp[2x]/(1-4x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Dec 14 2020 *)
-
Maxima
makelist(sum(binomial(n,k)*4^k*k!*2^(n-k),k,0,n),n,0,12); /* Emanuele Munarini, Dec 18 2017 */
-
PARI
x='x+O('x^99); Vec(serlaplace(exp(2*x)/(1-4*x))) \\ Altug Alkan, Dec 18 2017
Formula
E.g.f.: exp(2x)/(1-4x).
a(n) = 4n*a(n-1)+2^n, n>0, a(0)=1.
a(n) +2*(-2*n-1)*a(n-1) +8*(n-1)*a(n-2) = 0. - R. J. Mathar, Feb 19 2015
From Emanuele Munarini, Dec 18 2017: (Start)
a(n) = Sum_{k=0..n} binomial(n,k)*4^k*k!*2^(n-k).
Sum_{k=0..n} binomial(n,k)*(-2)^(n-k)*a(k) = 4^n*n!. (End)
From Vaclav Kotesovec, Dec 18 2017: (Start)
a(n) = exp(1/2) * 4^n * Gamma(n + 1, 1/2).
a(n) ~ n! * exp(1/2) * 4^n. (End)
Comments