cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097844 Chebyshev polynomials S(n,171).

Original entry on oeis.org

1, 171, 29240, 4999869, 854948359, 146191169520, 24997835039561, 4274483600595411, 730911697866775720, 124981625851618052709, 21371127108928820237519, 3654337754000976642563040, 624870384807058077058042321, 106849181464252930200282673851
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

Used for all positive integer solutions of Pell equation x^2 - 173*y^2 = -4. See A097845 with A098244.

Crossrefs

Programs

  • GAP
    a:=[1,171];; for n in [3..30] do a[n]:=171*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-171*x+x^2) )); // G. C. Greubel, Jan 14 2019
    
  • Mathematica
    CoefficientList[Series[1/(1-171x+x^2),{x,0,30}],x] (* or *) LinearRecurrence[{171,-1},{1,171},30] (* Harvey P. Dale, Mar 21 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-171*x+x^2)) \\ G. C. Greubel, Jan 14 2019
    
  • Sage
    (1/(1-171*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 14 2019
    

Formula

a(n) = S(n, 171) = U(n, 171/2) = S(2*n+1, sqrt(173))/sqrt(173) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x).
a(n) = 171*a(n-1) - a(n-2), n >= 1, a(-1)=0, a(0)=1, a(1)=171.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (171+13*sqrt(173))/2 and am = (171-13*sqrt(173))/2 = 1/ap.
G.f.: 1/(1-171*x+x^2).