cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097889 Numbers that are products of (at least two) consecutive primes.

Original entry on oeis.org

6, 15, 30, 35, 77, 105, 143, 210, 221, 323, 385, 437, 667, 899, 1001, 1147, 1155, 1517, 1763, 2021, 2310, 2431, 2491, 3127, 3599, 4087, 4199, 4757, 5005, 5183, 5767, 6557, 7387, 7429, 8633, 9797, 10403, 11021, 11663, 12317, 12673, 14351, 15015, 16637, 17017
Offset: 1

Views

Author

Bart la Bastide (bart(AT)xs4all.nl), Sep 21 2004

Keywords

Comments

Subsequence of A073485; A073490(a(n)) = 0. - Reinhard Zumkeller, Nov 20 2004
A proper subset of A073485. - Robert G. Wilson v, Jun 11 2010
A192280(a(n)) * (1 - A010051(a(n))) = 1. - Reinhard Zumkeller, Aug 26 2011 [corrected by Jason Yuen, Aug 29 2024]
The Heinz numbers of the partitions into at least 2 consecutive parts. The Heinz number of an integer partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Examples: (i) 105 (=3*5*7) is in the sequence because it is the Heinz number of the partition [2,3,4]; (ii) 108 (= 2*2*3*3*3) is not in the sequence because it is the Heinz number of the partition [1,1,2,2,2]. - Emeric Deutsch, Oct 02 2015

Examples

			1001 = 7 * 11 * 13.
		

Crossrefs

Cf. A050936.
Intersection of A073485 and A002808.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a097889 n = a097889_list !! (n-1)
    a097889_list = f $ singleton (6, 2, 3) where
       f s = y : f (insert (w, p, q') $ insert (w `div` p, a151800 p, q') s')
             where w = y * q'; q' = a151800 q
                   ((y, p, q), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 12 2015, Aug 26 2011
    
  • Maple
    isA097889 := proc(n)
        local plist,p,i ;
        plist := sort(convert(numtheory[factorset](n),list)) ;
        if nops(plist) < 2 then
            return false;
        end if;
        for i from 1 to nops(plist) do
            p := op(i,plist) ;
            if modp(n,p^2) = 0 then
                return false;
            end if;
            if i > 1 then
                if nextprime(op(i-1,plist)) <> p then
                    return false;
                end if;
            end if;
        end do:
        true;
    end proc:
    for n from 1 to 1000 do
        if isA097889(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jan 12 2016
  • Mathematica
    a = {}; Do[ AppendTo[a, Apply[ Times, (Prime /@ Partition[ Range[30], n, i]), 1]], {n, 2, 6}, {i, n - 1}]; Take[ Union[ Flatten[ a]], 45] (* Robert G. Wilson v, Sep 24 2004 *)
  • PARI
    list(lim)=my(v=List(), p, t); for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1, e-1, prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim, next(2)); listput(v, t); p=nextprime(p+1))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 24 2012
    
  • Python
    import heapq
    from sympy import sieve
    sieve.extend(10**6)
    primes = list(sieve._list)
    def prime(n): return primes[n-1]
    def aupton(terms, verbose=False):
        p = prime(1)*prime(2); h = [(p, 1, 2)]; nextcount = 3; alst = []
        while len(alst) < terms:
            (v, s, l) = heapq.heappop(h)
            alst.append(v)
            if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} prime(i)]")
            if v >= p:
                p *= prime(nextcount)
                heapq.heappush(h, (p, 1, nextcount))
                nextcount += 1
            v //= prime(s); s += 1; l += 1; v *= prime(l)
            heapq.heappush(h, (v, s, l))
        return alst
    print(aupton(45)) # Michael S. Branicky, Jun 15 2021

Formula

a(n) ~ n^2 log^2 n. - Charles R Greathouse IV, Oct 24 2012

Extensions

More terms from Robert G. Wilson v, Sep 24 2004
Data corrected for n > 41 by Reinhard Zumkeller, Aug 26 2011