cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097894 Partial sums of A014531.

Original entry on oeis.org

1, 4, 14, 44, 134, 400, 1184, 3488, 10253, 30108, 88386, 259492, 762085, 2239120, 6582280, 19360432, 56976859, 167774428, 494301778, 1457104948, 4297477252, 12680944960, 37436553544, 110569987344, 326713395019, 965775778420
Offset: 1

Views

Author

Emeric Deutsch, Sep 03 2004

Keywords

Comments

a(n) = number of peaks at even height in all Motzkin paths of length n+3. Example: a(2)=4 because in the 21 Motzkin paths of length 5 we have altogether 4 peaks at even height (shown between parentheses): HU(UD)D, U(UD)DH, U(UD)HD, UH(UD)D.
This is a kind of Motzkin transform of A121262 because the substitution x -> x*A001006(x) in the independent variable of the g.f. A121262(x) defines a sequence which is 1,0,0,0 followed by this sequence here. - R. J. Mathar, Nov 08 2008

Crossrefs

Cf. A014531.

Programs

  • Maple
    ser:=series((1-2*z-z^2)/2/z^3/(1-z)/sqrt(1-2*z-3*z^2)-1/2/z^3,z=0,32): seq(coeff(ser,z^n),n=1..28);
  • Mathematica
    CoefficientList[Series[((1-2*x-x^2)/(2*x^3*(1-x)*Sqrt[1-2*x-3*x^2])-1/(2*x^3))/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *) (* adapted to the offset by Vincenzo Librandi, Feb 13 2014 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x-x^2)/(2*x^3*(1-x)*sqrt(1-2*x-3*x^2))-1/(2*x^3)) \\ G. C. Greubel, Dec 20 2017

Formula

G.f.: (1-2*x-x^2)/(2*x^3*(1-x)*sqrt(1-2*x-3*x^2))-1/(2*x^3). D-finite with recurrence -(n-1)*(n+3)*a(n) +(n+2)*(3n-1)*a(n-1) +(n-1)*(n+1)*a(n-2) -3*n*(n+1)*a(n-3)=0. - R. J. Mathar, Nov 17 2011
a(n) ~ 3^(n+5/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 01 2014