cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097896 Number of compositions of n with either all parts odd or all parts even.

Original entry on oeis.org

1, 2, 2, 5, 5, 12, 13, 29, 34, 71, 89, 176, 233, 441, 610, 1115, 1597, 2840, 4181, 7277, 10946, 18735, 28657, 48416, 75025, 125489, 196418, 326003, 514229, 848424, 1346269, 2211077, 3524578, 5768423, 9227465, 15061424, 24157817, 39350313
Offset: 1

Views

Author

Dubois Marcel (dubois.ml(AT)club-internet.fr), Sep 03 2004

Keywords

Comments

Number of compositions of n with only even parts is 0 if n is odd, or 2^((n-2)/2) if n is even.

Examples

			For n=4: 1+1+1+1, 3+1, 1+3, 2+2, 4: total=5 so a(n)=5.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{}, Fibonacci[n] + If[EvenQ[n], 2^(n/2 - 1), 0]]; Table[ f[n], {n, 22}] (* Robert G. Wilson v, Sep 06 2004 *)
    LinearRecurrence[{1,3,-2,-2},{1,2,2,5},40] (* Harvey P. Dale, Nov 27 2012 *)

Formula

a(2*n-1) = Fibonacci(2*n-1), a(2*n) = 2^(n-1)+Fibonacci(2*n). - Vladeta Jovovic, Sep 05 2004
a(n)= +a(n-1) +3*a(n-2) -2*a(n-3) -2*a(n-4). G.f.: -x*(-1-x+x^3+3*x^2)/ ((2*x^2-1) * (x^2+x-1)). - R. J. Mathar, Feb 06 2010

Extensions

More terms from Robert G. Wilson v, Sep 06 2004