cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097910 Number of parts in all compositions of n into distinct parts.

Original entry on oeis.org

1, 1, 5, 5, 9, 27, 31, 49, 71, 185, 207, 339, 457, 685, 1421, 1745, 2577, 3615, 5143, 6877, 13439, 15965, 23823, 31983, 45553, 59425, 83549, 139013, 173769, 244803, 330391, 452257, 597935, 810929, 1052559, 1692723, 2074321, 2890333, 3783821, 5178041, 6658377
Offset: 1

Views

Author

Vladeta Jovovic, Sep 04 2004

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(n>i*(i+1)/2, [][], zip((x, y)->x+y, [b(n, i-1)],
          `if`(i>n, [], [0, b(n-i, i-1)]), 0)[]))
        end:
    a:= n-> (l-> add(i*l[i+1]*i!, i=1..nops(l)-1))([b(n$2)]):
    seq(a(n), n=1..50);  # Alois P. Heinz, Nov 20 2012
    # second Maple program:
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 10 2020
  • Mathematica
    Drop[ CoefficientList[ Series[ Sum[ k*k!*x^((k^2 + k)/2)/Product[1 - x^j, {j, 1, k}], {k, 1, 45}], {x, 0, 40}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *)

Formula

G.f.: Sum(k >= 0; k*k! x^((k^2+k)/2) / Prod(1<=j<=k; 1-x^j)).
a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} k! * k * A008289(n,k). - Alois P. Heinz, Aug 10 2020

Extensions

More terms from Robert G. Wilson v and John W. Layman, Sep 08 2004