A097916 Numerator of 2*zeta_K(-1) where K is the totally real field Q(sqrt(n)), as n runs through the squarefree numbers.
1, 1, 1, 1, 4, 7, 7, 1, 10, 4, 2, 19, 2, 23, 20, 25, 1, 34, 40, 2, 46, 38, 5, 41, 52, 8, 18, 21, 74, 56, 26, 7, 92, 14, 33, 85, 11, 28, 16, 112, 41, 4, 134, 116, 22, 41, 4, 46, 56, 54, 43, 6, 155, 52, 26, 206, 6, 212, 172, 34, 19, 206, 76, 12, 87, 197, 9, 206, 244, 12, 88, 278, 277, 248
Offset: 1
Examples
1/6, 1/3, 1/15, 1, 4/3, 7/3, 7/3, 1/3, 10/3, 4, ...
References
- F. Hirzebruch, Hilbert modular surfaces, Ges. Abh. II, 225-323.
Links
- F. Hirzebruch, Hilbert modular surfaces, L'Enseignement Math., 19 (1973), 183-281. See p. 200.
Crossrefs
Cf. A097917.
Programs
-
PARI
z(d) = -(1/2)*bernfrac(2)*d*sum(k=1, d-1, kronecker(d, k)*subst(bernpol(2), x, k/d)*(-1/2)) {v=[]; for(k=2, 100, if(issquarefree(k), my(d=k); if(k%4 <> 1, d = 4*k); v=concat(v, numerator(2*z(d)) ))); v} \\ Thomas Scheuerle, Feb 28 2024
-
Sage
[(round(60*QuadraticField(d).zeta_function(100)(-1).real())/30).numerator() for d in range(2, 100) if Integer(d).is_squarefree()] # Robin Visser, Feb 28 2024
Extensions
More terms from Robin Visser, Feb 28 2024