cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097916 Numerator of 2*zeta_K(-1) where K is the totally real field Q(sqrt(n)), as n runs through the squarefree numbers.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 7, 1, 10, 4, 2, 19, 2, 23, 20, 25, 1, 34, 40, 2, 46, 38, 5, 41, 52, 8, 18, 21, 74, 56, 26, 7, 92, 14, 33, 85, 11, 28, 16, 112, 41, 4, 134, 116, 22, 41, 4, 46, 56, 54, 43, 6, 155, 52, 26, 206, 6, 212, 172, 34, 19, 206, 76, 12, 87, 197, 9, 206, 244, 12, 88, 278, 277, 248
Offset: 1

Views

Author

N. J. A. Sloane, Sep 04 2004

Keywords

Examples

			1/6, 1/3, 1/15, 1, 4/3, 7/3, 7/3, 1/3, 10/3, 4, ...
		

References

  • F. Hirzebruch, Hilbert modular surfaces, Ges. Abh. II, 225-323.

Crossrefs

Cf. A097917.

Programs

  • PARI
    z(d) = -(1/2)*bernfrac(2)*d*sum(k=1, d-1, kronecker(d, k)*subst(bernpol(2), x, k/d)*(-1/2))
    {v=[]; for(k=2, 100, if(issquarefree(k), my(d=k); if(k%4 <> 1, d = 4*k); v=concat(v, numerator(2*z(d)) ))); v} \\ Thomas Scheuerle, Feb 28 2024
  • Sage
    [(round(60*QuadraticField(d).zeta_function(100)(-1).real())/30).numerator() for d in range(2, 100) if Integer(d).is_squarefree()]  # Robin Visser, Feb 28 2024
    

Extensions

More terms from Robin Visser, Feb 28 2024