A097934 Primes p that divide 3^((p-1)/2) - 2^((p-1)/2).
5, 19, 23, 29, 43, 47, 53, 67, 71, 73, 97, 101, 139, 149, 163, 167, 173, 191, 193, 197, 211, 239, 241, 263, 269, 283, 293, 307, 311, 313, 317, 331, 337, 359, 379, 383, 389, 409, 431, 433, 457, 461, 479, 499, 503, 509, 523, 547, 557, 571, 577, 599, 601, 619
Offset: 1
Examples
For p=5, 3^2 - 2^2 = 5.
Links
Crossrefs
Programs
-
Mathematica
okQ[n_]:=Module[{c=(n-1)/2},Divisible[3^c-2^c,n]]; Select[Prime[Range[200]],okQ] (* Harvey P. Dale, Apr 13 2011 *)
-
PARI
/* Set x=3,d=1,s=-1 */ ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0,print1(p", "))) }
-
PARI
isA097934(p) == isprime(p) && kronecker(6,p) == 1 \\ Jianing Song, Oct 13 2022
Formula
a(n) = A038876(n+1). - Alexander Adamchuk, May 04 2007
Comments