cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097936 Total number of parts in all compositions of n into distinct odd parts.

Original entry on oeis.org

1, 0, 1, 4, 1, 4, 1, 8, 19, 8, 19, 12, 37, 12, 55, 112, 73, 112, 91, 212, 127, 308, 145, 504, 781, 600, 817, 892, 1453, 1084, 2089, 1472, 3343, 1760, 4579, 6564, 6433, 6948, 8287, 11944, 11341, 16744, 14395, 26156, 18667, 35468, 22921, 53712, 64273, 67440
Offset: 1

Views

Author

Vladeta Jovovic, Sep 05 2004

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(n>(i+1)^2/4, [][], zip((x, y)->x+y, [b(n, i-2)],
          `if`(i>n, [], [0, b(n-i, i-2)]), 0)[]))
        end:
    a:= proc(n) option remember; local l; l:=[b(n, n-1+irem(n,2))];
          add(i*l[i+1]*i!, i=1..nops(l)-1)
        end:
    seq (a(n), n=1..60);  # Alois P. Heinz, Nov 20 2012
  • Mathematica
    Drop[ CoefficientList[ Series[Sum[k*k!*x^k^2/Product[1 - x^(2j), {j, 1, k}], {k, 1, 55}], {x, 0, 50}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *)

Formula

Sum_{k>0} (k*k!*x^(k^2)/Product_{j=1..k} (1-x^(2*j))).

Extensions

More terms from Robert G. Wilson v, Sep 08 2004