A097936 Total number of parts in all compositions of n into distinct odd parts.
1, 0, 1, 4, 1, 4, 1, 8, 19, 8, 19, 12, 37, 12, 55, 112, 73, 112, 91, 212, 127, 308, 145, 504, 781, 600, 817, 892, 1453, 1084, 2089, 1472, 3343, 1760, 4579, 6564, 6433, 6948, 8287, 11944, 11341, 16744, 14395, 26156, 18667, 35468, 22921, 53712, 64273, 67440
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(n>(i+1)^2/4, [][], zip((x, y)->x+y, [b(n, i-2)], `if`(i>n, [], [0, b(n-i, i-2)]), 0)[])) end: a:= proc(n) option remember; local l; l:=[b(n, n-1+irem(n,2))]; add(i*l[i+1]*i!, i=1..nops(l)-1) end: seq (a(n), n=1..60); # Alois P. Heinz, Nov 20 2012
-
Mathematica
Drop[ CoefficientList[ Series[Sum[k*k!*x^k^2/Product[1 - x^(2j), {j, 1, k}], {k, 1, 55}], {x, 0, 50}], x], 1] (* Robert G. Wilson v, Sep 08 2004 *)
Formula
Sum_{k>0} (k*k!*x^(k^2)/Product_{j=1..k} (1-x^(2*j))).
Extensions
More terms from Robert G. Wilson v, Sep 08 2004