A097956 Primes p such that p divides 5^(p-1)/2 - 3^(p-1)/2.
7, 11, 17, 43, 53, 59, 61, 67, 71, 103, 109, 113, 127, 131, 137, 163, 173, 179, 181, 191, 197, 223, 229, 233, 239, 241, 251, 257, 283, 293, 307, 311, 317, 349, 353, 359, 367, 409, 419, 421, 431, 463, 479, 487, 491, 523, 541, 547, 557, 593, 599, 601, 607, 617
Offset: 1
Examples
7 is a term since 5^3 - 3^3 = 7*14.
Links
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[150]],Divisible[5^((#-1)/2)-3^((#-1)/2),#]&] (* Harvey P. Dale, Apr 11 2018 *)
-
PARI
\\ s = +-1, d=diff ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0, print1(p, ", "))) } ptopm1d2(1000, 5, 2, -1)
-
PARI
isA097956(p) == isprime(p) && kronecker(60, p) == 1 \\ Jianing Song, Oct 13 2022
Comments