A378711
Irregular triangle read by rows: row n gives the proper positive integer fundamental solutions (x, y) of x^2 - 15*y^2 = - A378710(n), for n >= 1.
Original entry on oeis.org
3, 1, 2, 1, 7, 2, 1, 1, 11, 3, 15, 4, 5, 2, 10, 3, 3, 2, 18, 5, 1, 2, 26, 7, 8, 3, 13, 4, 7, 3, 17, 5, 5, 3, 25, 7, 4, 3, 11, 4, 16, 5, 29, 8, 2, 3, 37, 10, 1, 3, 41, 11, 9, 4, 24, 7, 14, 5, 19, 6, 7, 4, 32, 9, 13, 5, 23, 7, 5, 4, 40, 11, 3, 4, 12, 5, 27, 8, 48, 13, 1, 4, 56, 15
Offset: 1
n, A378710(n) \ k 1 2 3 4 5 6 7 8 pairs = 2^P
----------------------------------------------------------------------
1, 6 = 2*3 | 3 1 1
2, 11 | 2 1, 7 2 2
3, 14 = 2*7 | 1 1, 11 3 2
4, 15 = 3*5 | 15 4 1
5, 35 = 5*7 | 5 2, 10 3 2
6, 51 = 3*17 | 3 2, 18 5 2
7, 59 | 1 2, 26 7 2
8, 71 | 8 3, 13 4 2
9, 86 = 2*43 | 7 3, 17 5 2
10, 110 = 2*5*11 | 5 3, 25 7 2
11 119 = 7*17 | 4 3, 11 4, 16 5, 29 8 4
12, 131 | 2 3, 37 10 2
13, 134 = 2*67 | 1 3, 41 11 2
14, 159 = 3*53 | 9 4, 24 7 2
15, 179 | 14 5, 19 6 2
16, 191 | 7 4, 32 9 2
17, 206 = 2*103 | 13 5, 23 7 2
18, 215 = 5*43 | 5 4, 40 11 2
19, 231 = 3*7*11 | 3 4, 12 5, 27 8, 48 13 4
20, 239 | 1 4, 56 15 2
...
For the representation of -A378710(19) = -231 = -3*7*11 see the linked Figure of the directed and weighted Pell cycle graph with the two pairs of conjugate rpapfs (corresponding to solution of the congruence j^2 - 15 = = 0 (mod 231) with j and 231 - j, for j = 57 and j = 90. There the t-values are given as weights. E.g., the rpapf Fpa4 = [-231. 282, -86] has t-values (1-, 2, 2, 6). The pairs of row n = 19 belong to FPa1, FPa3, Fpa4 and FPa2, with the i exponents in the formula above 0, 0, 1, 1, respectively, and the sign of B15 is - in all four cases.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986.
A319584
Numbers that are palindromic in bases 2, 4, and 8.
Original entry on oeis.org
0, 1, 3, 5, 63, 65, 195, 325, 341, 4095, 4097, 4161, 12291, 12483, 20485, 20805, 21525, 21845, 258111, 262143, 262145, 266305, 786435, 798915, 1310725, 1311749, 1331525, 1332549, 1376277, 1377301, 1397077, 1398101, 16515135, 16777215, 16777217, 16781313
Offset: 1
89478485 = 101010101010101010101010101_2 = 11111111111111_4 = 525252525_8.
-
[n: n in [0..2*10^7] | Intseq(n, 2) eq Reverse(Intseq(n, 2)) and Intseq(n, 4) eq Reverse(Intseq(n, 4)) and Intseq(n, 8) eq Reverse(Intseq(n, 8))]; // Vincenzo Librandi, Sep 24 2018
-
palQ[n_, b_] := PalindromeQ[IntegerDigits[n, b]];
Reap[Do[If[palQ[n, 2] && palQ[n, 4] && palQ[n, 8], Print[n]; Sow[n]], {n, 0, 10^6}]][[2, 1]] (* Jean-François Alcover, Sep 25 2018 *)
Select[Range[0,168*10^5],AllTrue[Table[IntegerDigits[#,d],{d,{2,4,8}}],PalindromeQ]&] (* Harvey P. Dale, Jan 27 2024 *)
-
ispal(n, b) = my(d=digits(n, b)); Vecrev(d) == d;
isok(n) = ispal(n, 2) && ispal(n, 4) && ispal(n, 8); \\ Michel Marcus, Jun 11 2019
-
def nextpal(n, base): # m is the first palindrome successor of n in base base
m, pl = n+1, 0
while m > 0:
m, pl = m//base, pl+1
if n+1 == base**pl:
pl = pl+1
n = n//(base**(pl//2))+1
m, n = n, n//(base**(pl%2))
while n > 0:
m, n = m*base+n%base, n//base
return m
def rev(n, b):
m = 0
while n > 0:
n, m = n//b, m*b+n%b
return m
n, a = 1, 0
while n <= 100:
if a == rev(a, 4) == rev(a, 2):
print(a)
n += 1
a = nextpal(a, 8) # A.H.M. Smeets, Jun 08 2019
-
[n for n in (0..1000) if Word(n.digits(2)).is_palindrome() and Word(n.digits(4)).is_palindrome() and Word(n.digits(8)).is_palindrome()]
A378710
Positive numbers k such that -k is properly represented by the Pell Form x^2 - 15*y^2.
Original entry on oeis.org
6, 11, 14, 15, 35, 51, 59, 71, 86, 110, 119, 131, 134, 159, 179, 191, 206, 215, 231, 239, 251, 254, 294, 311, 326, 335, 339, 359, 366, 371, 374, 411, 419, 431, 446, 479, 491, 519, 515, 519, 539, 566, 590, 591, 599, 614, 635, 654, 659, 671, 686
Offset: 1
-2, -3, and -5 are not in the sequence because the rpapfs are [-2, 2, 7] reaching after two R(t)-steps with t values -0 and -1 the cycle member Cyhat(1), [-3, 0, 5] reaching with t values 0 and 1 Cy(1), and [-5, 0, 3] reaches with t = 0 Cyhat(2), respectively.
-a(1) = -6 = -2*3 is represented because [-6, 6, 1] = CR(2) (already a reduced form). There is only one infinite family of proper solutions with y > 0 (an ambiguous case) with fundamental solution (x, y) = (3, 1).
There is no solution representing -10 = -2*5, because [-10, 10, -1] leads with t = -8 to CRhat(1).
-a(11) = - 119 has the four rpapfs [-119, 54, -6], [-119, 82, -14], [-119, 156, -51], and [-119, 184, -71]. They lead with t = -5, t = -3, 4, t = -1, 2, 2, and t = -1, 3 to members CR(2), CR(1), CR(1), and CR(2), respectively.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986. Theorem 5.10, pp, 121-122.
- A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 21 - 34.
- Trygve Nagell, Introduction to Number Theory, 2nd edition, Chelsea Publishing Company, 1964, pp. 195 - 212.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, chapter IV, pp. 97 - 126.
Showing 1-3 of 3 results.
Comments