A097958 Primes p such that p divides 6^((p-1)/2) - 3^((p-1)/2).
3, 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599, 601, 607, 617
Offset: 1
Links
- Jianing Song, Table of n, a(n) for n = 1..10000 (terms 1..998 from Harvey P. Dale)
Programs
-
Mathematica
Select[Prime[Range[150]],Divisible[6^((#-1)/2)-3^((#-1)/2),#]&] (* Harvey P. Dale, Dec 25 2021 *)
-
PARI
\s = +-1,d=diff ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0,print1(p","))) }
-
PARI
isA097958(p) = (p==3) || (isprime(p) && kronecker(p,2)==1) \\ Jianing Song, Apr 21 2022
Formula
Equals {3} union A001132. - Jianing Song, Apr 21 2022
Extensions
Definition corrected by Cino Hilliard, Nov 10 2008
Definition clarified by Harvey P. Dale, Dec 25 2021
Offset corrected by Jianing Song, Apr 21 2022
Comments