A097987 Numbers k such that 4 does not divide phi(k), where phi is Euler's totient function (A000010).
1, 2, 3, 4, 6, 7, 9, 11, 14, 18, 19, 22, 23, 27, 31, 38, 43, 46, 47, 49, 54, 59, 62, 67, 71, 79, 81, 83, 86, 94, 98, 103, 107, 118, 121, 127, 131, 134, 139, 142, 151, 158, 162, 163, 166, 167, 179, 191, 199, 206, 211, 214, 223, 227, 239, 242, 243, 251, 254, 262, 263, 271
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- Robert E. Dressler, A property of the phi and sigma_j functions, Compositio Mathematica, Vol. 31, No. 2 (1975), pp. 115-118.
Programs
-
Mathematica
Select[Range@275, ! Divisible[EulerPhi[#], 4] &] (* Ivan Neretin, Aug 24 2016 *)
-
PARI
is(n)=my(o=valuation(n,2),p); (o<2 && isprimepower(n>>o,&p) && p%4>1) || n<5 \\ Charles R Greathouse IV, Feb 21 2013
Formula
a(n)=1, 2, 4, p^k, 2*p^k, with prime p == 3 (mod 4).
Extensions
Corrected and extended by Vladeta Jovovic, Sep 08 2004
Comments