cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098011 10^a(n) + 1 = A088773(n).

Original entry on oeis.org

1, 1, 2, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 1

Views

Author

Ray G. Opao, Sep 09 2004

Keywords

Comments

Starting from the 4th term, every succeeding term is twice the preceding term. I.e., a(n+1) = 2a(n).
Number of binary words of length n-2 that do not start with 01 (n>=2). Example: a(5)=6 because we have 000,001,100,101,110 and 111. Except for the initial term, column 0 of A119440. - Emeric Deutsch, May 19 2006
a(n) written in base 2: a(1) = 1, a(2) = 1, a(3) = 10, a(n) for n >= 4: 11, 110, 1100, 11000, 110000, ..., i.e.: 2 times 1, (n-4) times 0 (see A003953(n-3)). - Jaroslav Krizek, Aug 17 2009
a(n) for n > 1 are the values used in the variant of the game 2048 called "threes". - Michael De Vlieger, Jul 18 2018

Crossrefs

Cf. A119440.

Programs

  • Maple
    a:=proc(n) if n=1 or n=2 then 1 elif n=3 then 2 else 3*2^(n-4) fi end: seq(a(n),n=1..37); # Emeric Deutsch, May 19 2006
  • Mathematica
    Table[ Ceiling[3*2^(n - 4)], {n, 34}] (* or *)
    Rest@CoefficientList[Series[x(1 - x - x^3)/(1 - 2x), {x, 0, 33}], x] (* Robert G. Wilson v, Jul 08 2006 *)
    Table[Ceiling[2^{n-2}]-Floor[2^{n-4}],{n,1,10}] (* Martin Grymel, Oct 17 2012 *)
  • PARI
    x='x+O('x^99); Vec(x*(1-x-x^3)/(1-2*x)) \\ Altug Alkan, Jul 18 2018

Formula

G.f.: x*(1 - x - x^3)/(1 - 2*x). - Paul Barry, Feb 17 2005
a(n) = 3*2^(n-4) for n>3; a(1)=a(2)=1, a(3)=2. - Emeric Deutsch, May 19 2006
a(n) = 2^(n-4) + 2^(n-3) for n > 3. - Jaroslav Krizek, Aug 17 2009
a(1) = 1, a(2) = 1, a(3) = 2, for n > 3: a(n) = Sum_{i = 2..n-1} a(i). - Jaroslav Krizek, Nov 16 2009 [Corrected by Petros Hadjicostas, Nov 16 2019]
a(n) = A042950(n-3). - Philippe Deléham, Oct 17 2011
a(n) = ceiling(2^{n-2}) - floor(2^{n-4}). - Martin Grymel, Oct 17 2012

Extensions

More terms from Emeric Deutsch, May 19 2006