A098058 Prime(n) such that 4 does not divide the difference between prime(n) and prime(n+1).
2, 3, 5, 11, 17, 23, 29, 31, 41, 47, 53, 59, 61, 71, 73, 83, 101, 107, 113, 131, 137, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 227, 233, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 311, 317, 331, 337, 347, 353, 367, 373, 383, 409, 419, 421, 431
Offset: 1
Examples
Prime(2) = 3, prime(3) = 5. 4 does not divide 5-3 so prime(2)=3 is in the sequence. Runs: (3), (5), (7,11), (17), (19, 23), (29), (31), (37,41), (43,47), (53), ... The sequence is 2 followed by the last member of each run. Differences within each run are always divisible by 4.
References
- R. K. Guy, Unsolved Problems in Number Theory, A4.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jens Kruse Andersen, Consecutive Congruent Primes
Programs
-
Mathematica
Prime[Select[Range[100], Mod[Prime[ # + 1] - Prime[ # ], 4] !=0 &]] (* Ray Chandler, Oct 09 2006 *)
-
PARI
f(n) = for(x=1,n,z=(prime(x+1)-prime(x));if(z%4,print1(prime(x)",")))
-
PARI
alist(n)=my(r=vector(n),p=2,np,k=0);while(k
Franklin T. Adams-Watters, Jun 23 2015 -
PARI
list(lim)=my(v=List(),p=2); forprime(q=3,nextprime(lim\1+1), if((q-p)%4, listput(v,p)); p=q); Vec(v) \\ Charles R Greathouse IV, Jun 24 2015
Extensions
Edited by Ray Chandler, Oct 26 2006
Comments