cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350964 a(n) is the largest prime factor of 2^p - p^2 where p is the n-th prime.

Original entry on oeis.org

7, 79, 47, 113, 130783, 523927, 1198297, 240641, 641, 575058377, 1519711993, 65929327, 20105355479017, 9007199254738183, 7633399, 33189241, 21081993227096629777, 951850902549409, 4978773308244222679, 501615233613780359, 9671406556917033397642519, 8251206137, 3818597055399121, 13314319257913, 521211122055087383048446607
Offset: 3

Views

Author

N. J. A. Sloane, Mar 02 2022

Keywords

Comments

All prime factors of 2^p - p^2 are congruent to 1 or 7 (mod 8). (See A001132.) - Robert G. Wilson v, Mar 14 2022

References

  • E.-B. Escott, Note #1642, L'Intermédiaire des Mathématiciens, 8 (1901), page 12.

Crossrefs

Programs

  • Maple
    a:= n-> max(numtheory[factorset]((p-> 2^p-p^2)(ithprime(n)))):
    seq(a(n), n=3..27);  # Alois P. Heinz, Mar 03 2022
  • Mathematica
    a[n_] := FactorInteger[2^(p = Prime[n]) - p^2][[-1, 1]]; Array[a, 25, 3] (* Amiram Eldar, Mar 03 2022 *)
  • PARI
    a(n) = my(p=prime(n)); vecmax(factor(2^p - p^2)[,1]); \\ Michel Marcus, Mar 03 2022

Formula

a(n) = A006530(A098105(n)). - Amiram Eldar, Mar 03 2022

A242929 Primes p such that 2^p - p^2 is prime.

Original entry on oeis.org

5, 7, 17, 19, 53, 83, 227, 461, 2221, 3547, 9029, 119087
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 27 2014

Keywords

Comments

a(12) > 23053. - Robert Israel, Jun 10 2014

Examples

			5 is in this sequence because 5 and 2^5 - 5^2 = 7 are both prime.
		

Crossrefs

Subsequence of A072180.

Programs

  • Magma
    [p: p in PrimeUpTo(2200) | IsPrime(2^p - p^2)];
    
  • Maple
    select(p -> isprime(p) and isprime(2^p - p^2), {2} union {seq(2*i+1,i=1..2000)});# Robert Israel, Jun 10 2014
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[2^# - #^2] &] (* Alonso del Arte, May 27 2014 *)
  • PARI
    isok(p) = isprime(p) && ispseudoprime(2^p - p^2); \\ Daniel Suteu, Jun 25 2022

Formula

a(n) = prime(A117587(n)). - Daniel Suteu, Jun 25 2022

Extensions

a(9) from Alonso del Arte, May 27 2014
a(10) from Alois P. Heinz, May 28 2014
a(11) from Robert Israel, Jun 10 2014
a(12) added by Daniel Suteu, Jun 25 2022
Showing 1-2 of 2 results.