cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339446 Number of compositions (ordered partitions) of n into distinct parts such that the smallest part is equal to the number of parts.

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 8, 8, 14, 14, 20, 20, 26, 26, 32, 32, 62, 62, 92, 116, 146, 170, 224, 248, 302, 350, 404, 452, 530, 698, 776, 968, 1166, 1478, 1700, 2132, 2474, 3050, 3512, 4208, 4814, 5750, 6476, 7556, 8522, 10562, 11672, 13952, 16022, 19286, 22316, 26540
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 05 2020

Keywords

Examples

			a(12) = 8 because we have [10, 2], [2, 10], [5, 4, 3], [5, 3, 4], [4, 5, 3], [4, 3, 5], [3, 5, 4] and [3, 4, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[k! x^(k (3 k - 1)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} k! * x^(k*(3*k - 1)/2) / Product_{j=1..k-1} (1 - x^j).

A348124 Number of compositions of n where the smallest part is smaller than the number of parts.

Original entry on oeis.org

0, 1, 3, 6, 13, 28, 59, 122, 248, 501, 1009, 2028, 4070, 8159, 16343, 32717, 65472, 130991, 262041, 524157, 1048410, 2096943, 4194043, 8388285, 16776819, 33553946, 67108270, 134217002, 268434568, 536869825, 1073740493, 2147482019, 4294965305, 8589932164
Offset: 1

Views

Author

R. J. Mathar, Oct 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, s, c) option remember; `if`(s b(n$2, 0):
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 01 2021
  • Mathematica
    b[n_, s_, c_] := b[n, s, c] = If[s < c, Ceiling[2^(n - 1)],
         If[n == 0, 0, Sum[b[n - j, Min[j, s], c + 1], {j, 1, n}]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)

Formula

a(n) + A098132(n) + A098133(n) = 2^(n-1).

Extensions

a(23)-a(34) from Alois P. Heinz, Oct 01 2021
Showing 1-2 of 2 results.