A098172 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n,3k).
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 1, 20, 1, 0, 0, 0, 0, 0, 7, 35, 1, 0, 0, 0, 0, 0, 0, 28, 56, 1, 0, 0, 0, 0, 0, 0, 1, 84, 84, 1, 0, 0, 0, 0, 0, 0, 0, 10, 210, 120, 1, 0, 0, 0, 0, 0, 0, 0, 0, 55, 462, 165, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 220, 924, 220, 1
Offset: 0
Examples
Rows begin {1}, {0,1}, {0,0,1}, {0,0,1,1}, {0,0,0,4,1}, {0,0,0,0,10,1}, ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Crossrefs
Cf. A098158.
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 3*(n-k)) ))); # G. C. Greubel, Mar 15 2019
-
Magma
[[Binomial(n, 3*(n-k)): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Mar 15 2019
-
Mathematica
Table[Binomial[n, 3(n-k)], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2019 *)
-
PARI
{T(n, k) = binomial(n, 3*(n-k))}; \\ G. C. Greubel, Mar 15 2019
-
Sage
[[binomial(n, 3*(n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 15 2019
Formula
Triangle T(n, k) = binomial(n, 3(n-k)).
Comments