cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098173 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n, 4k).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 15, 1, 0, 0, 0, 0, 0, 0, 35, 1, 0, 0, 0, 0, 0, 0, 1, 70, 1, 0, 0, 0, 0, 0, 0, 0, 9, 126, 1, 0, 0, 0, 0, 0, 0, 0, 0, 45, 210, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 165, 330, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 495, 495, 1
Offset: 0

Views

Author

Paul Barry, Aug 30 2004

Keywords

Comments

Row sums are A038503.

Examples

			Rows begin
  {1},
  {0,1},
  {0,0,1},
  {0,0,0,1},
  {0,0,0,1,1},
  {0,0,0,0,5,1},
  ...
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 4*(n-k)) ))); # G. C. Greubel, Mar 15 2019
  • Magma
    [[Binomial(n, 4*(n-k)): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Mar 15 2019
    
  • Mathematica
    Table[Binomial[n, 4(n-k)], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2019 *)
  • PARI
    {T(n, k) = binomial(n, 4*(n-k))}; \\ G. C. Greubel, Mar 15 2019
    
  • Sage
    [[binomial(n, 4*(n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 15 2019
    

Formula

Triangle T(n, k) = binomial(n, 4(n-k)).