A098183 a(n) = 3*a(n-1) + a(n-3), a(0) = 1, a(1) = 1, a(2) = 4.
1, 1, 4, 13, 40, 124, 385, 1195, 3709, 11512, 35731, 110902, 344218, 1068385, 3316057, 10292389, 31945552, 99152713, 307750528, 955197136, 2964744121, 9201982891, 28561145809, 88648181548, 275146527535, 854000728414, 2650650366790, 8227097627905, 25535293612129
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,1).
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 1, 3*a(n-1)+a(n-3)) end: seq(a(n), n=0..30); # Alois P. Heinz, May 25 2022
Formula
G.f.: (1-x)^2/(1-3*x-x^3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k,3*k) * 3^k.