cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098182 a(n) = 3*a(n-1) - a(n-2) + a(n-3), a(0)=1,a(1)=1,a(2)=3.

Original entry on oeis.org

1, 1, 3, 9, 25, 69, 191, 529, 1465, 4057, 11235, 31113, 86161, 238605, 660767, 1829857, 5067409, 14033137, 38861859, 107619849, 298030825, 825334485, 2285592479, 6329473777, 17528163337, 48540608713, 134423136579
Offset: 0

Views

Author

Paul Barry, Aug 30 2004

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)^2/(1 - 3 x + x^2 - x^3), {x,0,50}], x] (* G. C. Greubel, Mar 03 2017 *)
  • PARI
    my(x='x+O(x^50)); Vec((1-x)^2/(1-3*x+x^2-x^3)) \\ G. C. Greubel, Mar 03 2017

Formula

G.f. : (1-x)^2/(1-3*x+x^2-x^3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k, 3*k) * 2^k.

A098184 a(n) = 3a(n-1)+a(n-2)+a(n-3), a(0)=1, a(1)=1, a(2)=5.

Original entry on oeis.org

1, 1, 5, 17, 57, 193, 653, 2209, 7473, 25281, 85525, 289329, 978793, 3311233, 11201821, 37895489, 128199521, 433695873, 1467182629, 4963443281, 16791208345, 56804250945, 192167404461, 650097672673, 2199264673425
Offset: 0

Views

Author

Paul Barry, Aug 30 2004

Keywords

Comments

Even bisection of the tribonacci sequence A000213. - Oboifeng Dira, Aug 03 2016

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,1,1},{1,1,5},30] (* Harvey P. Dale, Nov 29 2011 *)
    CoefficientList[Series[(1 - x)^2/(1 - 3 x - x^2 - x^3), {x, 0, 24}], x] (* Michael De Vlieger, Aug 03 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,1,3]^n*[1;1;5])[1,1] \\ Charles R Greathouse IV, Aug 03 2016
  • Sage
    from sage.combinat.sloane_functions import recur_gen3
    it = recur_gen3(1,1,1,3,1,1)
    [next(it) for i in range(32)] # Zerinvary Lajos, Jun 24 2008
    

Formula

G.f.: (1-x)^2/(1-3*x-x^2-x^3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k, 3*k)*4^k.
a(n)/a(n-1) tends to 3.38297576..., the square of the tribonacci constant A058265. - Gary W. Adamson, Feb 28 2006
Showing 1-2 of 2 results.