A319902 Unitary sociable numbers of order 4.
263820, 263940, 280380, 280500, 395730, 395910, 420570, 420750, 172459210, 209524210, 218628662, 218725430, 230143790, 231439570, 246667790, 272130250, 384121920, 384296640, 408233280, 408408000
Offset: 1
Links
- J. O. M. Pedersen, Known Unitary Sociable Numbers of order four [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Order 4 cycles, 2007.
- Eric Weisstein's World of Mathematics, Unitary Sociable Numbers
Crossrefs
Programs
-
Mathematica
f[n_] := f[n] = Module[{s = 0}, s = Total[Select[Divisors[n], GCD[#, n/#] == 1 &]]; Return[s - n]]; isok1[n_] := isok1[n] = Quiet[Check[f[n] == n, 0]]; isok2[n_] := isok2[n] = Quiet[Check[f[f[n]] == n, 0]]; isok4[n_] := isok4[n] = Quiet[Check[f[f[f[f[n]]]] == n, 0]]; isok[n_] := isok[n] = isok4[n] && Not[isok1[n]] && Not[isok2[n]]; Monitor[Position[Table[isok[n], {n, 1, 408408000}], True], n] (* Robert P. P. McKone, Aug 24 2023 *)
-
PARI
f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n; isok4(n) = iferr(f(f(f(f(n)))) == n, E, 0); isok2(n) = iferr(f(f(n)) == n, E, 0); isok1(n) = iferr(f(n) == n, E, 0); isok(n) = isok4(n) && !isok1(n) && !isok2(n);
Comments