cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098224 Number of primes <=10^n in which decimal digits are all distinct.

Original entry on oeis.org

4, 24, 121, 631, 3160, 13399, 47349, 137859, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086, 283086
Offset: 1

Views

Author

Labos Elemer, Oct 26 2004

Keywords

Comments

Partial sums of A073532. - Lekraj Beedassy, Aug 02 2008
No number with more than 10 digits can have all of its decimal digits distinct, and no number that uses all ten distinct decimal digits can be prime (because the sum of all ten decimal digits is 45 so any such number is divisible by 3). Therefore, every term in the sequence from and after a(9) is the same, i.e., 283086. - Harvey P. Dale, Dec 12 2010

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Max[DigitCount[n]]==1
    Table[Length[Select[Prime[Range[PrimePi[10^i]]],okQ]],{i,9}] (* Harvey P. Dale, Dec 12 2010 *)
  • Python
    from sympy import sieve
    def distinct_digs(n): s = str(n); return len(s) == len(set(s))
    def aupton(terms):
      ps, alst = 0, []
      for n in range(1, terms+1):
        if n >= 10: alst.append(ps); continue
        ps += sum(distinct_digs(p) for p in sieve.primerange(10**(n-1), 10**n))
        alst.append(ps)
      return alst
    print(aupton(35)) # Michael S. Branicky, Apr 24 2021

Formula

a(n) = 283086 for n >= 9.