A098254 Chebyshev polynomials S(n,443).
1, 443, 196248, 86937421, 38513081255, 17061208058544, 7558076656853737, 3348210897778146947, 1483249869639062243784, 657076344039206795849365, 291083337159498971499024911, 128949261285314005167272186208
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..377
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (443, -1).
- Index entries for sequences related to Chebyshev polynomials.
Formula
G.f.: 1/(1 - 443*x + x^2).
a(n) = S(n, 443)=U(n, 443/2)= S(2*n+1, sqrt(445))/sqrt(445) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 443*a(n-1)-a(n-2) for n >= 1, a(0)=1, a(1)=443, and a(-1):=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap:=(443 + 21*sqrt(445))/2 and am:=(443 - 21*sqrt(445))/2 = 1/ap.
Comments