cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098260 Chebyshev polynomials S(n,627).

Original entry on oeis.org

1, 627, 393128, 246490629, 154549231255, 96902121506256, 60757475635191257, 38094840321143411883, 23885404123881284059384, 14976110290833243961821885, 9389997266948320082778262511
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

Used for all positive integer solutions of Pell equation x^2 - 629*y^2 = -4. See A098261 with A098262.

Programs

  • Mathematica
    LinearRecurrence[{627,-1},{1,627},20] (* Harvey P. Dale, Aug 28 2012 *)

Formula

a(n)= S(n, 627)=U(n, 627/2)= S(2*n+1, sqrt(629))/sqrt(629) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n)=627*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=627; a(-1):=0.
a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (627+25*sqrt(629))/2 and am := (627-25*sqrt(629))/2 = 1/ap.
G.f.: 1/(1-627*x+x^2).