cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098277 Coefficients of polynomials D(n,x) related to median Euler numbers.

Original entry on oeis.org

1, 2, 2, 8, 20, 12, 48, 224, 344, 168, 384, 2880, 8096, 9872, 4272, 3840, 42240, 186816, 407936, 430688, 171168, 46080, 698880, 4451328, 15030528, 27944576, 26627648, 9915072, 645120, 12902400, 111605760, 535271424, 1519126272
Offset: 0

Views

Author

Ralf Stephan, Sep 07 2004

Keywords

Comments

2^n(x+1) divides D(n,x).

Examples

			D(0,x) = 1,
D(1,x) = 2*x + 2,
D(2,x) = 8*x^2 + 20*x + 12,
D(3,x) = 48*x^3 + 224*x^2 + 344*x + 168,
D(4,x) = 384*x^4 + 2880*x^3 + 8096*x^2 + 9872*x + 4272.
		

Crossrefs

D(n, 1/2) = A002832(n+1), D(n, -1/2) = A000657(n).
D(n, 0)/2^n = A098278(n), D(n, 1)/2^n = A098279(n).
Leading coefficients are A000165. Constant terms are in A098431.

Programs

  • Mathematica
    d[0, ] = 1; d[n, x_] := d[n, x] = (x+1)(x+2)d[n-1, x+2] - x(x+1)d[n-1, x];
    Table[CoefficientList[d[n, x], x] // Reverse, {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 27 2018 *)
  • PARI
    D(n,x)=if(n<1,1,(x+1)*(x+2)*D(n-1,x+2)-x*(x+1)*D(n-1,x))
    
  • PARI
    T(n,k)=local(A=sum(m=0,n,m!*(2*x)^m*prod(j=1,m,(j+y)/(1+j*(j+1)*x +x*O(x^n)))));polcoeff(polcoeff(A,n,x),n-k,y)
    {for(n=0,8,for(k=0,n,print1(T(n,k),", "));print())} \\ Paul D. Hanna, Sep 05 2012

Formula

Recurrence: D(0, x)=1, D(n, x) = (x+1)(x+2)D(n-1, x+2) - x(x+1)D(n-1, x).
G.f.: Sum[n>=0, D(n, x)t^n] = 1/(1-2(x+1)t/(1-2(x+2)t/(1-4(x+3)t/(1-4(x+4)t/...)))).
G.f.: Sum_{n>=0} D(n,y)*x^n = Sum_{n>=0} n!*(2*x)^n*Product_{k=1..n} (k+y)/(1+k*(k+1)*x). - Paul D. Hanna, Sep 05 2012