A098277 Coefficients of polynomials D(n,x) related to median Euler numbers.
1, 2, 2, 8, 20, 12, 48, 224, 344, 168, 384, 2880, 8096, 9872, 4272, 3840, 42240, 186816, 407936, 430688, 171168, 46080, 698880, 4451328, 15030528, 27944576, 26627648, 9915072, 645120, 12902400, 111605760, 535271424, 1519126272
Offset: 0
Examples
D(0,x) = 1, D(1,x) = 2*x + 2, D(2,x) = 8*x^2 + 20*x + 12, D(3,x) = 48*x^3 + 224*x^2 + 344*x + 168, D(4,x) = 384*x^4 + 2880*x^3 + 8096*x^2 + 9872*x + 4272.
Links
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26.
Crossrefs
Programs
-
Mathematica
d[0, ] = 1; d[n, x_] := d[n, x] = (x+1)(x+2)d[n-1, x+2] - x(x+1)d[n-1, x]; Table[CoefficientList[d[n, x], x] // Reverse, {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 27 2018 *)
-
PARI
D(n,x)=if(n<1,1,(x+1)*(x+2)*D(n-1,x+2)-x*(x+1)*D(n-1,x))
-
PARI
T(n,k)=local(A=sum(m=0,n,m!*(2*x)^m*prod(j=1,m,(j+y)/(1+j*(j+1)*x +x*O(x^n)))));polcoeff(polcoeff(A,n,x),n-k,y) {for(n=0,8,for(k=0,n,print1(T(n,k),", "));print())} \\ Paul D. Hanna, Sep 05 2012
Formula
Recurrence: D(0, x)=1, D(n, x) = (x+1)(x+2)D(n-1, x+2) - x(x+1)D(n-1, x).
G.f.: Sum[n>=0, D(n, x)t^n] = 1/(1-2(x+1)t/(1-2(x+2)t/(1-4(x+3)t/(1-4(x+4)t/...)))).
G.f.: Sum_{n>=0} D(n,y)*x^n = Sum_{n>=0} n!*(2*x)^n*Product_{k=1..n} (k+y)/(1+k*(k+1)*x). - Paul D. Hanna, Sep 05 2012
Comments