A098278
D(n,0)/2^n, where D(n,x) is triangle A098277.
Original entry on oeis.org
1, 1, 3, 21, 267, 5349, 154923, 6120741, 316271787, 20701782309, 1673934058923, 163850823271461, 19093313058395307, 2611858473935397669, 414452507370456337323, 75508557963926980473381
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 267*x^4 + 5349*x^5 + ...
where A(x) = 1 + x/(1+x) + 2!^2*x^2/((1+x)*(1+3*x)) + 3!^2*x^3/((1+x)*(1+3*x)*(1+6*x)) + 4!^2*x^4/((1+x)*(1+3*x)*(1+6*x)*(1+10*x)) + ... - _Paul D. Hanna_, Sep 05 2012
-
d[0, ] = 1; d[n, x_] := d[n, x] = (x+1)(x+2)d[n-1, x+2]-x(x+1)d[n-1, x];
a[n_] := d[n, 0]/2^n;
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 26 2018 *)
-
{a(n)=polcoeff(sum(m=0, n, m!^2*x^m/prod(k=1, m, 1+k*(k+1)/2*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 05 2012
A098279
a(n) = D(n,1)/2^n, where D(n,x) is triangle A098277.
Original entry on oeis.org
1, 2, 10, 98, 1594, 38834, 1323658, 60134210, 3511695322, 256306614866, 22861774551466, 2446866564603362, 309483997093321210, 45666236465616727538, 7774748058886412485834
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 98*x^3 + 1594*x^4 + 38834*x^5 +...
where
A(x) = 1 + 2!*x/(1+x) + 2!*3!*x^2/((1+x)*(1+3*x)) + 3!*4!*x^3/((1+x)*(1+3*x)*(1+6*x)) + 4!*5!*x^4/((1+x)*(1+3*x)*(1+6*x)*(1+10*x)) + ... - Paul D. Hanna, Sep 05 2012
- Vaclav Kotesovec, Table of n, a(n) for n = 0..250
- Ange Bigeni, Enumerating the symplectic Dellac configurations, arXiv:1705.03804 [math.CO], 2017.
- Ange Bigeni, Evgeny Feigin, Poincaré polynomials of the degenerate flag varieties of type C, arXiv:1804.10804 [math.CO], 2018.
- Ange Bigeni, Evgeny Feigin, Symmetric Dellac configurations, arXiv:1808.04275 [math.CO], 2018.
- Xin Fang and Ghislain Fourier, Torus fixed points in Schubert varieties and Genocchi numbers, arXiv:1504.03980 [math.RT], 2015.
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26.
-
d[0, _] = 1;
d[n_, x_] := d[n, x] = (x+1)(x+2) d[n-1, x+2] - x(x+1) d[n-1, x];
a[n_] := d[n, 1]/2^n;
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 27 2018 *)
-
{a(n)=polcoeff(sum(m=0, n, m!*(m+1)!*x^m/prod(k=1, m, 1+k*(k+1)/2*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 05 2012
A098431
Constant terms of polynomials in A098277.
Original entry on oeis.org
1, 2, 12, 168, 4272, 171168, 9915072, 783454848, 80965577472, 10599312542208, 1714108476337152, 335566486059952128, 78206210287187177472, 21396344618478777704448, 6790389880757556630700032
Offset: 0
A000657
Median Euler numbers (the middle numbers of Arnold's shuttle triangle).
Original entry on oeis.org
1, 1, 4, 46, 1024, 36976, 1965664, 144361456, 13997185024, 1731678144256, 266182076161024, 49763143319190016, 11118629668610842624, 2925890822304510631936, 895658946905031792553984, 315558279782214450517374976, 126780706777739389745128013824
Offset: 0
- V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom. 1 (1992), no. 2, 197-214.
- L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- V. I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51.
- Ange Bigeni and Evgeny Feigin, Symmetric Dellac configurations, arXiv:1808.04275 [math.CO], 2018.
- D. Dumont, Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Adv. Appl. Math., 16 (1995), 275-296.
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
-
a000657 n = a008280 (2 * n) n -- Reinhard Zumkeller, Nov 01 2013
-
Digits := 40: rr := array(1..40,1..40): rr[1,1] := 1: for i from 1 to 39 do rr[i+1,1] := subs(x=0,diff(1+tan(x),x$i)): od: for i from 2 to 40 do for j from 2 to i do rr[i,j] := rr[i,j-1]-(-1)^i*rr[i-1,j-1]: od: od: [seq(rr[2*i-1,i],i=1..20)];
# Alternatively after Alois P. Heinz in A000111:
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> b(n, n): seq(a(n), n = 0..15); # Peter Luschny, Oct 27 2017
-
max = 20; rr[1, 1] = 1; For[i = 1, i <= 2*max - 1, i++, rr[i + 1, 1] = D[1 + Tan[x], {x, i}] /. x -> 0]; For[i = 2, i <= 2*max, i++, For[j = 2, j <= i, j++, rr[i, j] = rr[i, j - 1] - (-1)^i*rr[i - 1, j - 1]]]; Table[rr[2*i - 1, i], {i, 1, max}] (* Jean-François Alcover, Jul 10 2012, after Maple *)
T[n_,0] := KroneckerDelta[n,0]; T[n_,k_] := T[n,k]=T[n,k-1]+T[n-1,n-k]; Table[T[2n,n], {n,0,16}] (* Oliver Seipel, Nov 24 2024, after Peter Luschny *)
-
a(n):=(-1)^(n)*sum(binomial(n,k)*euler(n+k),k,0,n); /* Vladimir Kruchinin, Apr 06 2015 */
-
# Algorithm of L. Seidel (1877)
def A000657_list(n) :
R = []; A = {-1:0, 0:1}
k = 0; e = 1
for i in (0..n) :
Am = 0; A[k + e] = 0; e = -e
for j in (0..i) :
Am += A[k]; A[k] = Am; k += e
if e < 0 :
R.append(A[0])
return R
A000657_list(30) # Peter Luschny, Apr 02 2012
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
A002832
Median Euler numbers.
Original entry on oeis.org
1, 3, 24, 402, 11616, 514608, 32394624, 2748340752, 302234850816, 41811782731008, 7106160248346624, 1455425220196234752, 353536812021243273216, 100492698847094242603008, 33045185784774350171111424
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Ange Bigeni and Evgeny Feigin, Symmetric Dellac configurations, arXiv:1808.04275 [math.CO], 2018.
- Kwang-Wu Chen, An Interesting Lemma for Regular C-fractions, J. Integer Seqs., Vol. 6, 2003.
- D. Dumont, Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Adv. Appl. Math., 16 (1995), 275-296.
- A. Randrianarivony and J. Zeng, Une famille de polynômes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26. (In French, with a summary in English on p. 1).
- R. C. Read, Letter to N. J. A. Sloane, 1992
See related polynomials in
A098277.
-
rr := array(1..40,1..40):rr[1,1] := 0:for i from 1 to 39 do rr[i+1,1] := (subs(x=0,diff((exp(x)-1)/cosh(x),x$i))):od: for i from 2 to 40 do for j from 2 to i do rr[i,j] := rr[i,j-1]-rr[i-1,j-1]:od:od: seq(rr[2*i-1,i-1],i=2..20); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu) Feb 16 2001, corrected by R. J. Mathar, Dec 22 2010
# alternative
A002832 := proc(n)
abs(A323833(n-1,n)) ;
end proc:
seq(A002832(n),n=1..40) ; # R. J. Mathar, Jun 11 2025
-
max = 20; rr[1, 1] = 0; For[i = 1, i <= 2*max - 1, i++, rr[i + 1, 1] = D[(Exp[x] - 1)/Cosh[x], {x, i}] /. x -> 0]; For[i = 2, i <= 2*max, i++, For[j = 2, j <= i, j++, rr[i, j] = rr[i, j - 1] - rr[i - 1, j - 1]]]; Table[(-1)^i*rr[2*i - 1, i - 1], {i, 2, max}] (* Jean-François Alcover, Jul 10 2012, after Maple *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 16 2001
Showing 1-5 of 5 results.
Comments