cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174827 Hankel transform of A098278.

Original entry on oeis.org

1, 2, 192, 4976640, 115579079884800, 6039552457237856256000000, 1499708022491968274577374576640000000000, 3321055547746756031053448740122923472047308800000000000000
Offset: 0

Views

Author

Paul Barry, Mar 30 2010

Keywords

Crossrefs

Programs

  • Maple
    A174827:=n->mul( ((k+1)*(2*k+1)*(2*k+2)*floor((2*k+3)/2))^(n-k), k=0..n): seq(A174827(n), n=0..7); # Wesley Ivan Hurt, Sep 13 2014
  • Mathematica
    Table[Product[((k + 1) (2 k + 1) (2 k + 2) Floor[(2 k + 3)/2])^(n - k), {k, 0, n}], {n, 0, 7}] (* Wesley Ivan Hurt, Sep 13 2014 *)

Formula

a(n) = Product{k=0..n, ((k+1)*(2*k+1)*(2*k+2)*floor((2*k+3)/2))^(n-k)}.
A000178(n) divides a(n). - Peter Luschny, Sep 14 2014
a(n) ~ 2^(n*(n+3) + 41/24) * n^(2*n^2 + 7*n/2 + 31/24) * Pi^(3*(n+1)/2) / (A^(5/2) * exp(3*n^2 + 7*n/2 - 5/24)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019

A098277 Coefficients of polynomials D(n,x) related to median Euler numbers.

Original entry on oeis.org

1, 2, 2, 8, 20, 12, 48, 224, 344, 168, 384, 2880, 8096, 9872, 4272, 3840, 42240, 186816, 407936, 430688, 171168, 46080, 698880, 4451328, 15030528, 27944576, 26627648, 9915072, 645120, 12902400, 111605760, 535271424, 1519126272
Offset: 0

Views

Author

Ralf Stephan, Sep 07 2004

Keywords

Comments

2^n(x+1) divides D(n,x).

Examples

			D(0,x) = 1,
D(1,x) = 2*x + 2,
D(2,x) = 8*x^2 + 20*x + 12,
D(3,x) = 48*x^3 + 224*x^2 + 344*x + 168,
D(4,x) = 384*x^4 + 2880*x^3 + 8096*x^2 + 9872*x + 4272.
		

Crossrefs

D(n, 1/2) = A002832(n+1), D(n, -1/2) = A000657(n).
D(n, 0)/2^n = A098278(n), D(n, 1)/2^n = A098279(n).
Leading coefficients are A000165. Constant terms are in A098431.

Programs

  • Mathematica
    d[0, ] = 1; d[n, x_] := d[n, x] = (x+1)(x+2)d[n-1, x+2] - x(x+1)d[n-1, x];
    Table[CoefficientList[d[n, x], x] // Reverse, {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 27 2018 *)
  • PARI
    D(n,x)=if(n<1,1,(x+1)*(x+2)*D(n-1,x+2)-x*(x+1)*D(n-1,x))
    
  • PARI
    T(n,k)=local(A=sum(m=0,n,m!*(2*x)^m*prod(j=1,m,(j+y)/(1+j*(j+1)*x +x*O(x^n)))));polcoeff(polcoeff(A,n,x),n-k,y)
    {for(n=0,8,for(k=0,n,print1(T(n,k),", "));print())} \\ Paul D. Hanna, Sep 05 2012

Formula

Recurrence: D(0, x)=1, D(n, x) = (x+1)(x+2)D(n-1, x+2) - x(x+1)D(n-1, x).
G.f.: Sum[n>=0, D(n, x)t^n] = 1/(1-2(x+1)t/(1-2(x+2)t/(1-4(x+3)t/(1-4(x+4)t/...)))).
G.f.: Sum_{n>=0} D(n,y)*x^n = Sum_{n>=0} n!*(2*x)^n*Product_{k=1..n} (k+y)/(1+k*(k+1)*x). - Paul D. Hanna, Sep 05 2012
Showing 1-2 of 2 results.