cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098305 Unsigned member r=-5 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 5, 36, 245, 1681, 11520, 78961, 541205, 3709476, 25425125, 174266401, 1194439680, 8186811361, 56113239845, 384605867556, 2636127833045, 18068288963761, 123841894913280, 848824975429201, 5817932933091125, 39876705556208676, 273319005960369605, 1873356336166378561
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

((-1)^(n+1))*a(n) = S_{-5}(n), n>=0, defined in A092184.

Crossrefs

Cf. A000032 (Lucas), A056854, A092184.

Formula

a(n) = 2*(T(n, 7/2)-(-1)^n)/9, with twice the Chebyshev polynomials of the first kind evaluated at x=7/2: 2*T(n, 7/2) = A056854(n) = ((7+sqrt(45))^n + (7-sqrt(45))^n)/2^n.
a(n) = 7*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=5.
G.f.: x*(1-x)/((1+x)*(1-7*x+x^2)) = x*(1-x)/(1-6*x-6*x^2+x^3) (from the Stephan link, see A092184).
a(n) = (Lucas(4*n) - 2*(-1)^n)/9. - Greg Dresden, Oct 10 2020

Extensions

More terms from Michel Marcus, Oct 11 2020