A098318 Decimal expansion of [5, 5, ...] = (5 + sqrt(29))/2.
5, 1, 9, 2, 5, 8, 2, 4, 0, 3, 5, 6, 7, 2, 5, 2, 0, 1, 5, 6, 2, 5, 3, 5, 5, 2, 4, 5, 7, 7, 0, 1, 6, 4, 7, 7, 8, 1, 4, 7, 5, 6, 0, 0, 8, 0, 8, 2, 2, 3, 9, 4, 4, 1, 8, 8, 4, 0, 1, 9, 4, 3, 3, 5, 0, 0, 8, 3, 2, 2, 9, 8, 1, 4, 1, 3, 8, 2, 9, 3, 4, 6, 4, 3, 8, 3, 1, 6, 8, 9, 0, 8, 3, 9, 9, 1, 7, 7, 4, 2, 2, 0
Offset: 1
Examples
5.19258240356725201562535524577016477814756...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- A. Stakhov and Samuil Aranson, Hyperbolic Fibonacci and Lucas functions, Golden Fibonacci Goniometry, Bodnar's Geometry, ..., Appl. Math. 2 (1) (2011) 74-84.
- Wikipedia, Metallic mean
- Index entries for algebraic numbers, degree 2
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); (5 + Sqrt(29))/2; // G. C. Greubel, Jun 30 2019
-
Mathematica
r=5; t=(r+(4+r^2)^(1/2))/2; FullSimplify[t] N[t,130] RealDigits[N[t,130]][[1]] ContinuedFraction[t,120] (* Clark Kimberling, Apr 09 2011 *)
-
PARI
(5 + sqrt(29))/2 \\ Charles R Greathouse IV, Jul 24 2013
-
Sage
numerical_approx((5+sqrt(29))/2, digits=100) # G. C. Greubel, Jun 30 2019
Formula
5 plus the constant in A085551. - R. J. Mathar, Sep 02 2008
Equals lim_{n->infinity} S(n, sqrt(29))/ S(n-1, sqrt(29)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023
Comments