cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098318 Decimal expansion of [5, 5, ...] = (5 + sqrt(29))/2.

Original entry on oeis.org

5, 1, 9, 2, 5, 8, 2, 4, 0, 3, 5, 6, 7, 2, 5, 2, 0, 1, 5, 6, 2, 5, 3, 5, 5, 2, 4, 5, 7, 7, 0, 1, 6, 4, 7, 7, 8, 1, 4, 7, 5, 6, 0, 0, 8, 0, 8, 2, 2, 3, 9, 4, 4, 1, 8, 8, 4, 0, 1, 9, 4, 3, 3, 5, 0, 0, 8, 3, 2, 2, 9, 8, 1, 4, 1, 3, 8, 2, 9, 3, 4, 6, 4, 3, 8, 3, 1, 6, 8, 9, 0, 8, 3, 9, 9, 1, 7, 7, 4, 2, 2, 0
Offset: 1

Views

Author

Eric W. Weisstein, Sep 02 2004

Keywords

Comments

The "metallic" constants A001622, A014176 etc. are defined inserting a = 1, 2, 3, 4, ... into (a+sqrt(a^2+4))/2. [Stakhov & Aranson] - R. J. Mathar, Feb 14 2011
This is the length/width ratio of a 5-extension rectangle; see A188640 where the metallic constants are defined for rational numbers. - Clark Kimberling, Apr 09 2011

Examples

			5.19258240356725201562535524577016477814756...
		

Crossrefs

Cf. A001622, A014176, A098316, A098317, A010716 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (5 + Sqrt(29))/2; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    r=5; t=(r+(4+r^2)^(1/2))/2; FullSimplify[t]
    N[t,130]
    RealDigits[N[t,130]][[1]]
    ContinuedFraction[t,120] (* Clark Kimberling, Apr 09 2011 *)
  • PARI
    (5 + sqrt(29))/2 \\ Charles R Greathouse IV, Jul 24 2013
    
  • Sage
    numerical_approx((5+sqrt(29))/2, digits=100) # G. C. Greubel, Jun 30 2019

Formula

5 plus the constant in A085551. - R. J. Mathar, Sep 02 2008
c^n = A052918(n-2) + A052918(n-1) * c, where c = (5 + sqrt(29))/2. - Gary W. Adamson, Oct 09 2023
Equals lim_{n->infinity} S(n, sqrt(29))/ S(n-1, sqrt(29)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023