cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098340 Expansion of 1/sqrt(1 - 6x + 21x^2).

Original entry on oeis.org

1, 3, 3, -27, -189, -567, 189, 11259, 59859, 129033, -395847, -4730481, -19580211, -21264201, 258785523, 1917734373, 6051991059, -2659507911, -135544952151, -738957668337, -1618780564359, 5297724346923, 63513121347063, 266379249285873, 286776522444861, -3683959713627417
Offset: 0

Views

Author

Paul Barry, Sep 03 2004

Keywords

Comments

Binomial transform of A012000. Second binomial transform of A098333.
Central coefficients of (1 + 3x - 3x^2)^n.

Crossrefs

Programs

  • Maple
    a := n -> 3^n*hypergeom([1/2 - n/2, -n/2], [1], -4/3):
    seq(simplify(a(n)), n=0..21); # Peter Luschny, Mar 19 2018
  • Mathematica
    CoefficientList[Series[1/Sqrt[1-6x+21x^2],{x,0,30}],x] (* Harvey P. Dale, Oct 07 2012 *)
  • PARI
    my(x = 'x + O('x^30)); Vec(1/sqrt(1-6*x+21*x^2)) \\ Jinyuan Wang, Sep 08 2019

Formula

E.g.f.: exp(3*x)*BesselI(0, 2*sqrt(-3)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k)*3^n*(-3)^(-k).
a(n) = 3^n*Sum{k=0..floor(n/2)} binomial(n, 2k)*binomial(2k, k)*(-3)^(-k).
D-finite with recurrence: n*a(n) + 3*(1-2*n)*a(n-1) + 21*(n-1)*a(n-2) = 0. - R. J. Mathar, Sep 26 2012
Lim sup n->infinity |a(n)|^(1/n) = sqrt(21). - Vaclav Kotesovec, Sep 29 2013
a(n) = 3^n*hypergeom([1/2 - n/2, -n/2], [1], -4/3). - Peter Luschny, Mar 19 2018