cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098352 Multiplication table of the even numbers read by antidiagonals.

Original entry on oeis.org

4, 8, 8, 12, 16, 12, 16, 24, 24, 16, 20, 32, 36, 32, 20, 24, 40, 48, 48, 40, 24, 28, 48, 60, 64, 60, 48, 28, 32, 56, 72, 80, 80, 72, 56, 32, 36, 64, 84, 96, 100, 96, 84, 64, 36, 40, 72, 96, 112, 120, 120, 112, 96, 72, 40, 44, 80, 108, 128, 140, 144, 140, 128, 108, 80, 44
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Examples

			   4   8  12  16  20  24  28  32
   8  16  24  32  40  48  56  64
  12  24  36  48  60  72  84  96
  16  32  48  64  80  96 112 128
  20  40  60  80 100 120 140 160
  24  48  72  96 120 144 168 192
  28  56  84 112 140 168 196 224
  32  64  96 128 160 192 224 256
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> 4*k*(n-k+1) ))); # G. C. Greubel, Aug 16 2019
  • Magma
    [4*k*(n-k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 16 2019
    
  • Maple
    seq(seq(4*k*(n-k+1), k = 1..n), n = 1..12); # G. C. Greubel, Aug 16 2019
  • Mathematica
    Table[4*k*(n-k+1), {n,12}, {k,n}]//Flatten (* G. C. Greubel, Aug 16 2019 *)
  • PARI
    T(n,k) = 4*k*(n-k+1); \\ G. C. Greubel, Aug 16 2019
    
  • Sage
    [[4*k*(n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Aug 16 2019
    

Formula

T(n,k) = 4*A003991(n,k). - R. J. Mathar, Dec 08 2015