A098352 Multiplication table of the even numbers read by antidiagonals.
4, 8, 8, 12, 16, 12, 16, 24, 24, 16, 20, 32, 36, 32, 20, 24, 40, 48, 48, 40, 24, 28, 48, 60, 64, 60, 48, 28, 32, 56, 72, 80, 80, 72, 56, 32, 36, 64, 84, 96, 100, 96, 84, 64, 36, 40, 72, 96, 112, 120, 120, 112, 96, 72, 40, 44, 80, 108, 128, 140, 144, 140, 128, 108, 80, 44
Offset: 1
Examples
4 8 12 16 20 24 28 32 8 16 24 32 40 48 56 64 12 24 36 48 60 72 84 96 16 32 48 64 80 96 112 128 20 40 60 80 100 120 140 160 24 48 72 96 120 144 168 192 28 56 84 112 140 168 196 224 32 64 96 128 160 192 224 256
Links
- G. C. Greubel, Antidiagonals n = 1..100, flattened
Programs
-
GAP
Flat(List([1..12], n-> List([1..n], k-> 4*k*(n-k+1) ))); # G. C. Greubel, Aug 16 2019
-
Magma
[4*k*(n-k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 16 2019
-
Maple
seq(seq(4*k*(n-k+1), k = 1..n), n = 1..12); # G. C. Greubel, Aug 16 2019
-
Mathematica
Table[4*k*(n-k+1), {n,12}, {k,n}]//Flatten (* G. C. Greubel, Aug 16 2019 *)
-
PARI
T(n,k) = 4*k*(n-k+1); \\ G. C. Greubel, Aug 16 2019
-
Sage
[[4*k*(n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Aug 16 2019
Formula
T(n,k) = 4*A003991(n,k). - R. J. Mathar, Dec 08 2015