cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098359 Multiplication table of the square numbers read by antidiagonals.

Original entry on oeis.org

1, 4, 4, 9, 16, 9, 16, 36, 36, 16, 25, 64, 81, 64, 25, 36, 100, 144, 144, 100, 36, 49, 144, 225, 256, 225, 144, 49, 64, 196, 324, 400, 400, 324, 196, 64, 81, 256, 441, 576, 625, 576, 441, 256, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 400, 729, 1024, 1225, 1296, 1225, 1024, 729, 400, 121
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Comments

sum_{k=0..2n-2} (-1)^k*a(A000124(2n-2)+k-1) = n. See A003991. - Charlie Marion, Apr 22 2013

Examples

			Square array A(n,k) begins:
   1,   4,   9,  16,   25,   36,   49, ...
   4,  16,  36,  64,  100,  144,  196, ...
   9,  36,  81, 144,  225,  324,  441, ...
  16,  64, 144, 256,  400,  576,  784, ...
  25, 100, 225, 400,  625,  900, 1225, ...
  36, 144, 324, 576,  900, 1296, 1764, ...
  49, 196, 441, 784, 1225, 1764, 2401, ...
		

Crossrefs

Antidiagonal sums give A033455.
Main diagonal gives A000583.

Programs

  • Maple
    A:= (n,k)-> (n*k)^2:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, May 19 2025

Formula

A(n,k) = n^2*k^2.
G.f.: [xy(1+x)(1+y)] / [(1-x)^3 * (1-y)^3 ]. - Ralf Stephan, Oct 27 2004
Sum_{j=1..n} A(j,1+n-j)*j = A213547(n). - Alois P. Heinz, May 19 2025

Extensions

Offset corrected by Alois P. Heinz, May 19 2025