A098359 Multiplication table of the square numbers read by antidiagonals.
1, 4, 4, 9, 16, 9, 16, 36, 36, 16, 25, 64, 81, 64, 25, 36, 100, 144, 144, 100, 36, 49, 144, 225, 256, 225, 144, 49, 64, 196, 324, 400, 400, 324, 196, 64, 81, 256, 441, 576, 625, 576, 441, 256, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 400, 729, 1024, 1225, 1296, 1225, 1024, 729, 400, 121
Offset: 1
Examples
Square array A(n,k) begins: 1, 4, 9, 16, 25, 36, 49, ... 4, 16, 36, 64, 100, 144, 196, ... 9, 36, 81, 144, 225, 324, 441, ... 16, 64, 144, 256, 400, 576, 784, ... 25, 100, 225, 400, 625, 900, 1225, ... 36, 144, 324, 576, 900, 1296, 1764, ... 49, 196, 441, 784, 1225, 1764, 2401, ...
Crossrefs
Programs
-
Maple
A:= (n,k)-> (n*k)^2: seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, May 19 2025
Formula
A(n,k) = n^2*k^2.
G.f.: [xy(1+x)(1+y)] / [(1-x)^3 * (1-y)^3 ]. - Ralf Stephan, Oct 27 2004
Sum_{j=1..n} A(j,1+n-j)*j = A213547(n). - Alois P. Heinz, May 19 2025
Extensions
Offset corrected by Alois P. Heinz, May 19 2025
Comments