A098360 Multiplication table of the cube numbers read by antidiagonals.
1, 8, 8, 27, 64, 27, 64, 216, 216, 64, 125, 512, 729, 512, 125, 216, 1000, 1728, 1728, 1000, 216, 343, 1728, 3375, 4096, 3375, 1728, 343, 512, 2744, 5832, 8000, 8000, 5832, 2744, 512, 729, 4096, 9261, 13824, 15625, 13824, 9261, 4096, 729, 1000, 5832, 13824
Offset: 1
Examples
1; 8,8; 27,64,27; 64,216,216,64; ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10011 (first 141 antidiagonals, flattened)
Programs
-
GAP
Flat(List([2..11],m->List([1..m-1],i->i^3*(m-i)^3))); # Muniru A Asiru, Jun 27 2018
-
Maple
seq(seq(i^3*(m-i)^3,i=1..m-1),m=2..10); # Robert Israel, Jun 27 2018
-
Mathematica
With[{s = Range[10]^3}, Table[s[[#]] s[[j]] &[i - j + 1], {i, Length@s}, {j, i}]] // Flatten (* Michael De Vlieger, Jun 27 2018 *)
Formula
G.f. as rectangular array: [xy(1+4x+x^2)(1+4y+y^2)] / [(1-x)^4 * (1-y)^4 ]. - Ralf Stephan, Oct 27 2004, corrected by Robert Israel, Jun 27 2018
a(n) = A003991(n)^3.- Robert Israel, Jun 27 2018
Extensions
More terms from Ralf Stephan, Oct 27 2004
Offset corrected by Robert Israel, Jun 27 2018