A098358
Multiplication table of the triangular numbers read by antidiagonals.
Original entry on oeis.org
1, 3, 3, 6, 9, 6, 10, 18, 18, 10, 15, 30, 36, 30, 15, 21, 45, 60, 60, 45, 21, 28, 63, 90, 100, 90, 63, 28, 36, 84, 126, 150, 150, 126, 84, 36, 45, 108, 168, 210, 225, 210, 168, 108, 45, 55, 135, 216, 280, 315, 315, 280, 216, 135, 55, 66, 165, 270, 360, 420, 441, 420, 360
Offset: 0
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
Triangle begins:
1;
3, 3;
6, 9, 6;
10, 18, 18, 10;
...
-
a[n_, k_] := Binomial[k + 1, 2]*Binomial[n + 1, 2]; Table[a[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)
A098361
Multiplication table of the factorial numbers read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 6, 2, 2, 6, 24, 6, 4, 6, 24, 120, 24, 12, 12, 24, 120, 720, 120, 48, 36, 48, 120, 720, 5040, 720, 240, 144, 144, 240, 720, 5040, 40320, 5040, 1440, 720, 576, 720, 1440, 5040, 40320, 362880, 40320, 10080, 4320, 2880, 2880, 4320, 10080, 40320, 362880
Offset: 0
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
The array A(n, k) starts in row n=0 with columns k >= 0 as:
1, 1, 2, 6, 24, 120, ...
1, 1, 2, 6, 24, 120, ...
2, 2, 4, 12, 48, 240, ...
6, 6, 12, 36, 144, 720, ...
24, 24, 48, 144, 576, 2880, ...
120, 120, 240, 720, 2880, 14400, ...
720, 720, 1440, 4320, 17280, 86400, ...
5040, 5040, 10080, 30240, 120960, 604800, ...
40320, 40320, 80640, 241920, 967680, 4838400, ...
362880, 362880, 725760, 2177280, 8709120, 43545600, ...
...
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10...
0: 1
1: 1 1
2: 2 1 2
3: 6 2 2 6
4: 24 6 4 6 24
5: 120 24 12 12 24 120
6: 720 120 48 36 48 120 720
7: 5040 720 240 144 144 240 720 5040
8: 40320 5040 1440 720 576 720 1440 5040 40320
9: 362880 40320 10080 4320 2880 2880 4320 10080 40320 362880
10: 3628800 362880 80640 30240 17280 14400 17280 30240 80640 362880 3628800
... - _Wolfdieter Lang_, May 07 2018
- R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach (Revised Edition), 2003, Ch 2.4 Table 2-2.
- Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 116-125.
- Ivan Niven, Irrational Numbers, Math. Assoc. Am., John Wiley and Sons, New York, 2nd printing 1963, pp. 19-21.
- Stefano Spezia, First 101 antidiagonals of the array, flattened
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- I. V. Statsenko, Problem on variants of cluster formation at permutations in ordered structures, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2023, pp. 7-10. In Russian.
-
F:=Factorial; [F(n-k)*F(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2022
-
seq(print(seq(k!*(n-k)!,k=0..n)),n=0..6); # Peter Luschny, Aug 23 2010
-
Table[(n+1)!*Beta[n-k+1, k+1], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula, Oct 29 2008 *)
-
f=factorial; flatten([[f(n-k)*f(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 12 2022
A145216
Self-convolution of (1^3, 2^3, 3^3, 4^3, ... ).
Original entry on oeis.org
1, 16, 118, 560, 2003, 5888, 14988, 34176, 71445, 139216, 255970, 448240, 752999, 1220480, 1917464, 2931072, 4373097, 6384912, 9142990, 12865072, 17817019, 24320384, 32760740, 43596800, 57370365, 74717136, 96378426, 123213808
Offset: 1
a(3) = 118 because 1*(3^3) + (2^3)*(2^3) + (3^3)*1 = 118.
- A. Umar, B. Yushau and B. M. Ghandi, (2006), "Patterns in convolution of two series", in Stewart, S. M., Olearski, J. E. and Thompson, D. (Eds), Proceedings of the Second Annual Conference for Middle East Teachers of Science, Mathematics and Computing (pp. 95-101). METSMaC: Abu Dhabi.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 2. - _N. J. A. Sloane_, Mar 23 2014
- A. Umar, B. Yushau and B. M. Ghandi, Convolution of two series, Australian Senior Maths Journal 21(2) (2007), 6-11.
-
[(3*n^7+7*n^3-10*n)/420: n in [2..40]]; // Vincenzo Librandi, Mar 24 2014
-
f:=n->(3*n^7+7*n^3-10*n)/420;
[seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
-
Table[Sum[(k - i)^3 (1 + i)^3, {i, 0, k - 1}], {k, 1, 35}] (* Clark Kimberling, Jun 17 2012 *)
CoefficientList[Series[(1 + 4 x + x^2)^2/(1 - x)^8, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
Table[ListConvolve[Range[n]^3,Range[n]^3],{n,30}]//Flatten (* Harvey P. Dale, Sep 07 2024 *)
A098359
Multiplication table of the square numbers read by antidiagonals.
Original entry on oeis.org
1, 4, 4, 9, 16, 9, 16, 36, 36, 16, 25, 64, 81, 64, 25, 36, 100, 144, 144, 100, 36, 49, 144, 225, 256, 225, 144, 49, 64, 196, 324, 400, 400, 324, 196, 64, 81, 256, 441, 576, 625, 576, 441, 256, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 400, 729, 1024, 1225, 1296, 1225, 1024, 729, 400, 121
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
Square array A(n,k) begins:
1, 4, 9, 16, 25, 36, 49, ...
4, 16, 36, 64, 100, 144, 196, ...
9, 36, 81, 144, 225, 324, 441, ...
16, 64, 144, 256, 400, 576, 784, ...
25, 100, 225, 400, 625, 900, 1225, ...
36, 144, 324, 576, 900, 1296, 1764, ...
49, 196, 441, 784, 1225, 1764, 2401, ...
-
A:= (n,k)-> (n*k)^2:
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, May 19 2025
Showing 1-4 of 4 results.
Comments