A098358
Multiplication table of the triangular numbers read by antidiagonals.
Original entry on oeis.org
1, 3, 3, 6, 9, 6, 10, 18, 18, 10, 15, 30, 36, 30, 15, 21, 45, 60, 60, 45, 21, 28, 63, 90, 100, 90, 63, 28, 36, 84, 126, 150, 150, 126, 84, 36, 45, 108, 168, 210, 225, 210, 168, 108, 45, 55, 135, 216, 280, 315, 315, 280, 216, 135, 55, 66, 165, 270, 360, 420, 441, 420, 360
Offset: 0
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
Triangle begins:
1;
3, 3;
6, 9, 6;
10, 18, 18, 10;
...
-
a[n_, k_] := Binomial[k + 1, 2]*Binomial[n + 1, 2]; Table[a[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)
A098360
Multiplication table of the cube numbers read by antidiagonals.
Original entry on oeis.org
1, 8, 8, 27, 64, 27, 64, 216, 216, 64, 125, 512, 729, 512, 125, 216, 1000, 1728, 1728, 1000, 216, 343, 1728, 3375, 4096, 3375, 1728, 343, 512, 2744, 5832, 8000, 8000, 5832, 2744, 512, 729, 4096, 9261, 13824, 15625, 13824, 9261, 4096, 729, 1000, 5832, 13824
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
1; 8,8; 27,64,27; 64,216,216,64; ...
-
Flat(List([2..11],m->List([1..m-1],i->i^3*(m-i)^3))); # Muniru A Asiru, Jun 27 2018
-
seq(seq(i^3*(m-i)^3,i=1..m-1),m=2..10); # Robert Israel, Jun 27 2018
-
With[{s = Range[10]^3}, Table[s[[#]] s[[j]] &[i - j + 1], {i, Length@s}, {j, i}]] // Flatten (* Michael De Vlieger, Jun 27 2018 *)
A143216
Triangle read by rows: T(n,k) = n!*k!, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 6, 6, 12, 36, 24, 24, 48, 144, 576, 120, 120, 240, 720, 2880, 14400, 720, 720, 1440, 4320, 17280, 86400, 518400, 5040, 5040, 10080, 30240, 120960, 604800, 3628800, 25401600, 40320, 40320, 80640, 241920, 967680, 4838400, 29030400, 203212800, 1625702400
Offset: 0
First few rows of the triangle =
1;
1, 1;
2, 2, 4;
6, 6, 12, 36;
24, 24, 48, 144, 576;
120, 120, 240, 720, 2880, 14400;
720, 720, 1440, 4320, 17280, 86400, 518400;
...
T(6,3) = 4320 = 6!*3! = 720*6.
-
F:=Factorial; [F(n)*F(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2022
-
Table[n!k!,{n,0,8},{k,0,n}] (* Stefano Spezia, Jul 09 2020 *)
-
f=factorial; flatten([[f(n)*f(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 12 2022
A098359
Multiplication table of the square numbers read by antidiagonals.
Original entry on oeis.org
1, 4, 4, 9, 16, 9, 16, 36, 36, 16, 25, 64, 81, 64, 25, 36, 100, 144, 144, 100, 36, 49, 144, 225, 256, 225, 144, 49, 64, 196, 324, 400, 400, 324, 196, 64, 81, 256, 441, 576, 625, 576, 441, 256, 81, 100, 324, 576, 784, 900, 900, 784, 576, 324, 100, 121, 400, 729, 1024, 1225, 1296, 1225, 1024, 729, 400, 121
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
Square array A(n,k) begins:
1, 4, 9, 16, 25, 36, 49, ...
4, 16, 36, 64, 100, 144, 196, ...
9, 36, 81, 144, 225, 324, 441, ...
16, 64, 144, 256, 400, 576, 784, ...
25, 100, 225, 400, 625, 900, 1225, ...
36, 144, 324, 576, 900, 1296, 1764, ...
49, 196, 441, 784, 1225, 1764, 2401, ...
-
A:= (n,k)-> (n*k)^2:
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, May 19 2025
A356545
Triangle read by rows. T(n, k) are the coefficients of polynomials p_n(x) based on the Eulerian numbers of first order representing the Bernoulli numbers as B_n = p_n(1) / (n + 1)!.
Original entry on oeis.org
1, 1, 0, 2, -1, 0, 6, -8, 2, 0, 24, -66, 44, -6, 0, 120, -624, 792, -312, 24, 0, 720, -6840, 14496, -10872, 2736, -120, 0, 5040, -86400, 285840, -347904, 171504, -28800, 720, 0, 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0
Offset: 0
The table T(n, k) of the coefficients, sorted in ascending order, starts:
[0] 1;
[1] 1, 0;
[2] 2, -1, 0;
[3] 6, -8, 2, 0;
[4] 24, -66, 44, -6, 0;
[5] 120, -624, 792, -312, 24, 0;
[6] 720, -6840, 14496, -10872, 2736, -120, 0;
[7] 5040, -86400, 285840, -347904, 171504, -28800, 720, 0;
[8] 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0;
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 268. (Since the thirty-fourth printing, Jan. 2022, with B(1) = 1/2.)
- Ira Gessel, Eulerian number identity, MathOverflow, Apr 2019.
- Peter Luschny, How are the Eulerian numbers of the first-order related to the Eulerian numbers of the second-order?, MathOverflow, Feb. 2021.
- Peter Luschny, Eulerian polynomials.
- Oskar Schlömilch, Ueber die Bernoulli'sche Funktion und deren Gebrauch bei der Entwickelung halbconvergenter Reihen, Zeitschrift fuer Mathematik und Pysik, vol. 1 (1856), p. 193-211.
- Julius Worpitsky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik (Crelle), 94 (1883), 203-232. See page 22, first formula.
-
E1 := proc(n, k) combinat:-eulerian1(n, k) end:
p := (n, x) -> add(E1(n, k)*k!*(n - k)!*(-x)^k, k = 0..n):
seq(print(seq(coeff(p(n, x), x, k), k=0..n)), n = 0..8);
seq(p(n, 1)/(n + 1)!, n = 0..14); # check the Bernoulli representation
-
T[n_, k_] := k! * (n-k)! * Sum[(-1)^(k-j) * (k-j+1)^n * Binomial[n+1, j], {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // TableForm
(* Diagonals: *)
d[n_, k_] := k! * (n - k)! * Sum[(-1)^(n-k-j)*(n - j - k + 1)^n * Binomial[n + 1, j], {j, 0, n - k}];
A303986
Triangle of derivatives of the Niven polynomials evaluated at 0.
Original entry on oeis.org
1, 1, -2, 1, -6, 12, 1, -12, 60, -120, 1, -20, 180, -840, 1680, 1, -30, 420, -3360, 15120, -30240, 1, -42, 840, -10080, 75600, -332640, 665280, 1, -56, 1512, -25200, 277200, -1995840, 8648640, -17297280, 1, -72, 2520, -55440, 831600, -8648640, 60540480, -259459200, 518918400, 1, -90, 3960, -110880, 2162160, -30270240, 302702400, -2075673600, 8821612800, -17643225600, 1, -110, 5940, -205920, 5045040, -90810720, 1210809600, -11762150400, 79394515200, -335221286400, 670442572800
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 1 -2
2: 1 -6 12
3: 1 -12 60 -120
4: 1 -20 180 -840 1680
5: 1 -30 420 -3360 15120 -30240
6: 1 -42 840 -10080 75600 -332640 66528
7: 1 -56 1512 -25200 277200 -1995840 8648640 -17297280
8: 1 -72 2520 -55440 831600 -8648640 60540480 -259459200 518918400
...
- Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 116-125.
- Ivan Niven, Irrational Numbers, Math. Assoc. Am., John Wiley and Sons, New York, 2nd printing 1963, pp. 19-21.
-
Flat(List([0..10],n->List([0..n],k->(-1)^k*Binomial(n,n-k)*Factorial(n+k)/Factorial(n)))); # Muniru A Asiru, May 15 2018
-
T := (n, k) -> (-1)^k*pochhammer(n+1, k)*binomial(n, k):
seq(print(seq(T(n, k), k=0..n)), n=0..9); # Peter Luschny, May 11 2018
-
T(n,k)=(-1)^k*binomial(n,n-k)*binomial(n+k,n)*k! \\ M. F. Hasler, May 09 2018
A349424
Integers that are the product of two factorials A000142.
Original entry on oeis.org
1, 2, 4, 6, 12, 24, 36, 48, 120, 144, 240, 576, 720, 1440, 2880, 4320, 5040, 10080, 14400, 17280, 30240, 40320, 80640, 86400, 120960, 241920, 362880, 518400, 604800, 725760, 967680, 2177280, 3628800, 4838400, 7257600, 8709120, 21772800, 25401600, 29030400
Offset: 1
720 is a term since 720 = 5!*3! = 6!*0! = 6!*1!.
-
(Union@Flatten@Table[x!*y!, {x, 0, 100}, {y, 0, x}])[[1 ;; 50]]
-
lista(nn) = select(x->(x<2*nn!), setbinop((x,y)->x!*y!, [1..nn])); \\ Michel Marcus, Nov 17 2021
Showing 1-7 of 7 results.
Comments