A098360
Multiplication table of the cube numbers read by antidiagonals.
Original entry on oeis.org
1, 8, 8, 27, 64, 27, 64, 216, 216, 64, 125, 512, 729, 512, 125, 216, 1000, 1728, 1728, 1000, 216, 343, 1728, 3375, 4096, 3375, 1728, 343, 512, 2744, 5832, 8000, 8000, 5832, 2744, 512, 729, 4096, 9261, 13824, 15625, 13824, 9261, 4096, 729, 1000, 5832, 13824
Offset: 1
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
1; 8,8; 27,64,27; 64,216,216,64; ...
-
Flat(List([2..11],m->List([1..m-1],i->i^3*(m-i)^3))); # Muniru A Asiru, Jun 27 2018
-
seq(seq(i^3*(m-i)^3,i=1..m-1),m=2..10); # Robert Israel, Jun 27 2018
-
With[{s = Range[10]^3}, Table[s[[#]] s[[j]] &[i - j + 1], {i, Length@s}, {j, i}]] // Flatten (* Michael De Vlieger, Jun 27 2018 *)
A213558
Rectangular array: (row n) = b**c, where b(h) = h^3, c(h) = (n-1+h)^3, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 16, 8, 118, 91, 27, 560, 496, 280, 64, 2003, 1878, 1366, 637, 125, 5888, 5672, 4672, 2944, 1216, 216, 14988, 14645, 12917, 9542, 5446, 2071, 343, 34176, 33664, 30920, 25088, 17088, 9088, 3256, 512, 71445, 70716, 66620, 57359, 43535
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1.....16.....118....560.....2003
8.....91.....496....1878....5672
27....280....1366...4672....12917
64....637....2944...9542....25088
125...1216...5446...17088...43535
-
b[n_] := n^3; c[n_] := n^3
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213558 *)
d = Table[t[n, n], {n, 1, 40}] (* A213559 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213560 *)
A349966
a(n) = Sum_{k=0..n} (k * (n-k))^n.
Original entry on oeis.org
1, 0, 1, 16, 418, 17600, 1086979, 92223488, 10292241540, 1462309109760, 257739952352133, 55188518041440256, 14111052911099343782, 4246668467339066589184, 1485904567816768099571207, 598145009954138900489830400
Offset: 0
-
a[0] = 1; a[n_] := Sum[(k*(n - k))^n, {k, 0, n}]; Array[a, 16, 0] (* Amiram Eldar, Dec 07 2021 *)
-
a(n) = sum(k=0, n, (k*(n-k))^n);
A306548
Triangle T(n,k) read by rows, where the k-th column is the shifted self-convolution of the power function n^k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 10, 8, 1, 0, 0, 5, 20, 34, 16, 1, 0, 0, 6, 35, 104, 118, 32, 1, 0, 0, 7, 56, 259, 560, 418, 64, 1, 0, 0, 8, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0, 9, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0, 0, 10, 165, 1968, 14988, 64064, 130835, 101504, 20758, 512, 1, 0, 0
Offset: 0
==================================================================
k= 0 1 2 3 4 5 6 7 8 9 10
==================================================================
n=0: 2;
n=1: 2, 0;
n=2: 3, 0, 0;
n=3: 4, 1, 0, 0;
n=4: 5, 4, 1, 0, 0;
n=5: 6, 10, 8, 1, 0, 0;
n=6: 7, 20, 34, 16, 1, 0, 0;
n=7: 8, 35, 104, 118, 32, 1, 0, 0;
n=8: 9, 56, 259, 560, 418, 64, 1, 0, 0;
n=9: 10, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0;
n=10: 11, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0; 0;
...
-
f[m_, s_] := Piecewise[{{s^m, s >= 0}, {0, True}}];
F[n_, m_] := Sum[f[m, n - k]*f[m, k], {k, -Infinity, +Infinity}];
T[n_, k_] := F[n - k, k];
Column[Table[T[n, k], {n, 0, 12}, {k, 0, n}], Left]
Showing 1-4 of 4 results.
Comments