cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A099178 Numbers which are the sum of two positive cubes and divisible by 17.

Original entry on oeis.org

1241, 1343, 1547, 1853, 2261, 2771, 3383, 4097, 9826, 9928, 10234, 10744, 11458, 12376, 13498, 14824, 16354, 18088, 20026, 22168, 24514, 27064, 29818, 32776, 33201, 33507, 34119, 35037, 35938, 36261, 37791, 39627, 41769, 44217, 46971
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Nov 15 2004

Keywords

Examples

			Sums not divisible by 17 are indicated in asterisks:
....|...1....8...27...64...125...216...343...512...729..1000..1331
------------------------------------------------------------------
1...|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
8...|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
27..|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
64..|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
125.|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
216.|...*....*....*....*.....*.....*.....*.....*.....*.....*..1547
343.|...*....*....*....*.....*.....*.....*.....*.....*..1343.....*
512.|...*....*....*....*.....*.....*.....*.....*...1241....*.....*
729.|...*....*....*....*.....*.....*.....*..1241.....*.....*.....*
1000|...*....*....*....*.....*.....*..1343.....*.....*.....*.....*
1331|...*....*....*....*.....*..1547.....*.....*.....*.....*.....*
		

Crossrefs

Cf. A098365.

Programs

  • Mathematica
    upto[n_] := Block[{t}, Union@ Reap[ Do[If[Mod[t = x^3 + y^3, 17] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[47000] (* Giovanni Resta, Jun 12 2020 *)

A098364 Multiplication table of the digits of the square root of 2 read by antidiagonals.

Original entry on oeis.org

1, 4, 4, 1, 16, 1, 4, 4, 4, 4, 2, 16, 1, 16, 2, 1, 8, 4, 4, 8, 1, 3, 4, 2, 16, 2, 4, 3, 5, 12, 1, 8, 8, 1, 12, 5, 6, 20, 3, 4, 4, 4, 3, 20, 6, 2, 24, 5, 12, 2, 2, 12, 5, 24, 2, 3, 8, 6, 20, 6, 1, 6, 20, 6, 8, 3, 7, 12, 2, 24, 10, 3, 3, 10, 24, 2, 12, 7, 3, 28, 3, 8, 12, 5, 9, 5, 12, 8, 3, 28, 3
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Examples

			Triangle begins:
  1;
  4,4;
  1,16,1;
  4,4,4,4;
  ...
Array begins:
  1  4 1  4 2 ...
  4 16 4 16 8 ...
  1  4 1  4 2 ...
  4 16 4 16 8 ...
  2  8 2  8 4 ...
  ...
		

Crossrefs

Programs

  • PARI
    sqrt2(nn) = {my(r=0, x=2, list = List(), d); for(digits=1, nn, d=0; while((20*r+d)*d <= x, d++); d--; listput(list, d); x=100*(x-(20*r+d)*d); r=10*r+d;); Vec(list);} \\ A002193
    lista(nn) = {my(dd = sqrt2(nn)); for (n=1, nn, for (k=1, n, print1(dd[k]*dd[n-k+1], ", ")));} \\ Michel Marcus, Nov 11 2021

Formula

T(n,k) = A003991(A002193(n), A002193(k)). - Michel Marcus, Nov 03 2021

Extensions

Offset changed to 1 and a(34)=1 inserted by Georg Fischer, Nov 02 2021

A098366 Multiplication table of the digits of the cube root of 2 read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 5, 4, 5, 9, 10, 10, 9, 9, 18, 25, 18, 9, 2, 18, 45, 45, 18, 2, 1, 4, 45, 81, 45, 4, 1, 0, 2, 10, 81, 81, 10, 2, 0, 4, 0, 5, 18, 81, 18, 5, 0, 4, 9, 8, 0, 9, 18, 18, 9, 0, 8, 9, 8, 18, 20, 0, 9, 4, 9, 0, 20, 18, 8, 9, 16, 45, 36, 0, 2, 2, 0, 36, 45, 16, 9, 4, 18, 40, 81, 36, 0, 1, 0, 36
Offset: 0

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Examples

			1; 2,2; 5,4,5; 9,10,10,9; ...
		

Crossrefs

A098367 Multiplication table of the digits of the fourth root of 2 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 8, 1, 8, 9, 8, 8, 9, 2, 9, 64, 9, 2, 0, 2, 72, 72, 2, 0, 7, 0, 16, 81, 16, 0, 7, 1, 7, 0, 18, 18, 0, 7, 1, 1, 1, 56, 0, 4, 0, 56, 1, 1, 5, 1, 8, 63, 0, 0, 63, 8, 1, 5, 0, 5, 8, 9, 14, 0, 14, 9, 8, 5, 0, 0, 0, 40, 9, 2, 0, 0, 2, 9, 40, 0, 0, 2, 0, 0, 45, 2, 0, 49, 0, 2, 45, 0, 0, 2
Offset: 0

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Examples

			1; 1,1; 8,1,8; 9,8,8,9; ...
		

Crossrefs

A100829 Numbers that are a sum of two nonzero squares and not divisible by 17.

Original entry on oeis.org

2, 5, 8, 10, 13, 18, 20, 25, 26, 29, 32, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 72, 73, 74, 80, 82, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 137, 145, 146, 148, 149, 157, 160, 162, 164, 169, 173, 178, 180, 181, 185, 193, 194, 197
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 06 2005

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(x) local F;
      if x mod 17 = 0 then return false fi;
      F:= ifactors(x)[2];
      if ormap(t -> t[1] mod 4 = 3 and t[2]::odd, F) then return false fi;
      ormap(t -> t[1] mod 4 = 1 or (t[1]=2 and t[2]::odd), F)
    end proc:
    select(filter, [$1..200]); # Robert Israel, Jun 17 2025
  • Mathematica
    With[{upto=200},Select[Total/@Tuples[Range[Ceiling[Sqrt[upto]]]^2,2], Mod[ #,17]!=0&&#<=upto&]]//Union (* Harvey P. Dale, May 18 2019 *)

Extensions

Definition corrected by Robert Israel, Jun 17 2025
Showing 1-5 of 5 results.