cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098405 Expansion of (1-sqrt(1-8*x))/((1-x)*(4*x*sqrt(1-8*x))).

Original entry on oeis.org

1, 7, 47, 327, 2343, 17127, 126951, 950631, 7173991, 54471527, 415652711, 3184708455, 24485137255, 188802730855, 1459525454695, 11307626564455, 87775235181415, 682523302202215, 5315297718995815, 41450938169985895, 323653082644384615, 2529960757626047335
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Comments

Partial sums of A069720.

Crossrefs

Cf. A069720.

Programs

  • Magma
    [n le 2 select 7^(n-1) else ((9*n-4)*Self(n-1) - 4*(2*n-1)*Self(n-2))/n: n in [1..30]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    Table[SeriesCoefficient[(1-Sqrt[1-8*x])/((1-x)*(4*x*Sqrt[1-8*x])),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
    Accumulate[Table[2^(n-1) Binomial[2n-1,n],{n,20}]] (* Harvey P. Dale, Jan 20 2013 *)
  • PARI
    my(x='x+O('x^66)); Vec((1-sqrt(1-8*x))/((1-x)*(4*x*sqrt(1-8*x)))) \\ Joerg Arndt, May 11 2013
    
  • SageMath
    def A098405(n): return sum( binomial(2*k+1,k)*2^k for k in range(n+1))
    [A098405(n) for n in range(41)] # G. C. Greubel, Dec 27 2023

Formula

a(n) = Sum_{k=0..n} binomial(2*k+1, k)*2^k.
D-finite with recurrence: (n+1)*a(n) = (9*n+5)*a(n-1) - 4*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ 2^(3*n+4)/(7*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012