A098464 Numbers k such that lcm(1,2,3,...,k) equals the denominator of the k-th harmonic number H(k).
1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 27, 28, 29, 30, 31, 32, 49, 50, 51, 52, 53, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Peter Shiu, The denominators of harmonic numbers, arXiv:1607.02863 [math.NT], 2016.
- Eric Weisstein's World of Mathematics, Harmonic Number.
Programs
-
Mathematica
Select[Range[250], LCM@@Range[ # ]==Denominator[HarmonicNumber[ # ]]&]
-
PARI
isok(n) = lcm(vector(n, i, i)) == denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
-
Python
from fractions import Fraction from sympy import lcm k, l, h, A098464_list = 1, 1, Fraction(1, 1), [] while k < 10**6: if l == h.denominator: A098464_list.append(k) k += 1 l = lcm(l,k) h += Fraction(1,k) # Chai Wah Wu, Mar 07 2021
Comments