A098468 Decimal expansion of constant A*B in the asymptotic expression of the summatory function Sum_{n=1..N} (1/phi(n)) as A(log(N)+B) + O(log(N)/N).
0, 6, 0, 5, 7, 4, 2, 2, 9, 4, 8, 6, 3, 0, 5, 7, 3, 2, 1, 6, 0, 9, 7, 4, 4, 0, 1, 1, 6, 6, 3, 1, 3, 8, 4, 0, 3, 5, 4, 9, 7, 2, 2, 8, 4, 0, 8, 8, 2, 9, 8, 9, 2, 8, 1, 1, 5, 1, 2, 2, 4, 4, 8, 5, 6, 0, 9, 3, 4, 9, 8, 5, 5, 9, 0, 1, 8, 6, 4, 9, 1, 3, 1, 2, 3, 9, 2, 9, 8, 1, 5
Offset: 0
Examples
B = -0.0605742294.../A, where A is A082695.
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 116.
Links
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 52 (Z1*(gamma-Z2)).
- Eric Weisstein's World of Mathematics, Totient Summatory Function
Programs
-
Mathematica
(* Using S. Finch's notation *) digits = 102; A = Zeta[2]*Zeta[3]/Zeta[6]; S = Sum[Switch[Mod[k, 6], 0, 1, 1, 0, 2, -1, 3, -1, 4, 0, 5, 1]*PrimeZetaP'[k], {k, 2, 400}] // N[#, digits+40]&; B = EulerGamma - S; AB = A*B; Join[{0}, RealDigits[AB, 10, digits][[1]]] (* Jean-François Alcover, Apr 28 2018 *)
Formula
Sum_{n=1..N} 1/phi(n) = A*(log(N)+B) + O(log(N)/N). - Jean-François Alcover, Apr 28 2018
Comments