A158661 Least number k such that sigma_n(k) > sigma_n(k+1), where sigma_n(k) = sum of the n-th powers of the divisors of k.
4, 4, 6, 24, 60, 144, 360, 852, 1968, 4488, 10068, 22272, 48780, 105948, 228588, 490404, 1046976, 2225964, 4715400, 9956976, 20965212, 44031360, 92262348, 192920784, 402629256, 838827576, 1744784388, 3623814864, 7516104564
Offset: 0
Keywords
Examples
The values of the sigma_3 function (A001158) are increasing up to 25. Hence a(3)=24.
Programs
-
Mathematica
Join[{4,4}, Table[k=Floor[NSolve[Zeta[n](x-1)^n==x^n, x, WorkingPrecision->100][[ -1,1,2]]]; While[DivisorSigma[n,k]
Formula
For n>0, a(n) = A098475(n) - 1.
Comments