cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098493 Triangle T(n,k) read by rows: difference between A098489 and A098490 at triangular rows.

Original entry on oeis.org

1, 0, -1, -1, -1, 1, -1, 1, 2, -1, 0, 3, 0, -3, 1, 1, 2, -5, -2, 4, -1, 1, -2, -7, 6, 5, -5, 1, 0, -5, 0, 15, -5, -9, 6, -1, -1, -3, 12, 9, -25, 1, 14, -7, 1, -1, 3, 15, -18, -29, 35, 7, -20, 8, -1, 0, 7, 0, -42, 14, 63, -42, -20, 27, -9, 1, 1, 4, -22, -24, 85, 14, -112, 42
Offset: 0

Views

Author

Ralf Stephan, Sep 12 2004

Keywords

Comments

Also, coefficients of polynomials that have values in A098495 and A094954.

Examples

			Triangle begins:
   1;
   0, -1;
  -1, -1, 1;
  -1,  1, 2, -1;
   0,  3, 0, -3, 1;
  ...
		

Crossrefs

Columns include A010892, -A076118. Diagonals include A033999, A038608, (-1)^n*A000096. Row sums are in A057077.
Cf. A098494 (diagonal polynomials), A085478, A244419.

Programs

  • Maple
    A098493 := proc (n, k)
    add((-1)^(k+binomial(n-j+1,2))*binomial(floor((1/2)*n+(1/2)*j),j)* binomial(j,k), j = k..n);
    end proc:
    seq(seq(A098493(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
  • PARI
    T(n,k)=if(k>n||k<0||n<0,0,if(k>=n-1,(-1)^n*if(k==n,1,-k),if(n==1,0,if(k==0,T(n-1,0)-T(n-2,0),T(n-1,k)-T(n-2,k)-T(n-1,k-1)))))

Formula

T(n, k) = A098489[n(n+1)/2, k] - A098490[n(n+1)/2, k].
Recurrence: T(n, k) = T(n-1, k)-T(n-1, k-1)-T(n-2, k); T(n, k)=0 for n<0, k>n, k<0; T(n, n)=(-1)^n; T(n, n-1)=(-1)^n*(1-n).
G.f.: (1-x)/(1+(y-1)*x+x^2). [Vladeta Jovovic, Dec 14 2009]
From Peter Bala, Jul 13 2021: (Start)
Riordan array ( (1 - x)/(1 - x + x^2), -x/(1 - x + x^2) ).
T(n,k) = (-1)^k * the (n,k)-th entry of Q^(-1)*P = Sum_{j = k..n} (-1)^(k+binomial(n-j+1,2))*binomial(floor((1/2)*n+(1/2)*j),j)* binomial(j,k), where P denotes Pascal's triangle A007318 and Q denotes triangle A061554 (formed from P by sorting the rows into descending order). (End)
From Peter Bala, Jun 26 2025: (Start)
n-th row polynomial R(n, x) = Sum_{k = 0..n} (-1)^k * binomial(n+k, 2*k) * (1 + x)^k.
R(n, 2*x + 1) = (-1)^n * Dir(n, x), where Dir(n,x) denotes the n-th row polynomial of the triangle A244419.
R(n, -1 - x) = b(n, x), where b(n, x) denotes the n-th row polynomial of the triangle A085478. (End)

A098491 Number of partitions of n with parts occurring at most thrice and an even number of parts. Row sums of A098489.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 6, 8, 11, 15, 19, 25, 32, 41, 52, 66, 83, 104, 129, 160, 197, 242, 296, 361, 438, 530, 640, 770, 923, 1105, 1318, 1569, 1864, 2208, 2611, 3082, 3628, 4264, 5003, 5858, 6848, 7993, 9312, 10833, 12584, 14595, 16904, 19552, 22582, 26049
Offset: 0

Views

Author

Ralf Stephan, Sep 12 2004

Keywords

Crossrefs

Equals A001935 - A098492. Differs from A098492 at triangular indices.

Formula

a(n) = (A001935(n)+(-1)^n*A010054(n))/2. - Vladeta Jovovic, Sep 16 2004

Extensions

More terms from Vladeta Jovovic, Sep 16 2004

A098490 Triangle T(n,k) read by rows: partitions of n with parts occurring at most thrice, k parts occurring once or twice and an odd number of parts.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 2, 3, 1, 0, 2, 4, 2, 1, 2, 4, 4, 0, 1, 7, 6, 0, 0, 3, 8, 7, 1, 1, 3, 9, 10, 2, 0, 4, 12, 12, 4, 0, 5, 14, 15, 7, 1, 3, 18, 23, 7, 1, 0, 6, 19, 26, 14, 1, 0, 7, 22, 32, 20, 2, 2, 6, 24, 42, 26, 4, 0, 8, 30, 49, 35, 7, 0, 8, 36, 60, 44
Offset: 0

Views

Author

Ralf Stephan, Sep 12 2004

Keywords

Examples

			Triangle starts:
  {1}
  {0,1}
  {0,1}
  {1,1,0}
  {0,1,1}
  {0,1,2}
  {1,1,1,1}
  ...
6 is 2+2+2, 6, 1+1+4, 1+2+3, with odd number of parts and no part more than thrice. The number of parts occurring once or twice in these partitions is 0,1,2,3, respectively. The 6th row is therefore 1,1,1,1.
		

Crossrefs

Differs from A098489 in rows with triangular index. Cf. A094893.
Row sums are in A098492.
Showing 1-3 of 3 results.